22 resultados para Power tool industry.
em Universidad Politécnica de Madrid
Resumo:
Shading reduces the power output of a photovoltaic (PV) system. The design engineering of PV systems requires modeling and evaluating shading losses. Some PV systems are affected by complex shading scenes whose resulting PV energy losses are very difficult to evaluate with current modeling tools. Several specialized PV design and simulation software include the possibility to evaluate shading losses. They generally possess a Graphical User Interface (GUI) through which the user can draw a 3D shading scene, and then evaluate its corresponding PV energy losses. The complexity of the objects that these tools can handle is relatively limited. We have created a software solution, 3DPV, which allows evaluating the energy losses induced by complex 3D scenes on PV generators. The 3D objects can be imported from specialized 3D modeling software or from a 3D object library. The shadows cast by this 3D scene on the PV generator are then directly evaluated from the Graphics Processing Unit (GPU). Thanks to the recent development of GPUs for the video game industry, the shadows can be evaluated with a very high spatial resolution that reaches well beyond the PV cell level, in very short calculation times. A PV simulation model then translates the geometrical shading into PV energy output losses. 3DPV has been implemented using WebGL, which allows it to run directly from a Web browser, without requiring any local installation from the user. This also allows taken full benefits from the information already available from Internet, such as the 3D object libraries. This contribution describes, step by step, the method that allows 3DPV to evaluate the PV energy losses caused by complex shading. We then illustrate the results of this methodology to several application cases that are encountered in the world of PV systems design. Keywords: 3D, modeling, simulation, GPU, shading, losses, shadow mapping, solar, photovoltaic, PV, WebGL
Resumo:
Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.
Resumo:
This paper presents an initiative for monitoring the competence acquisition by a team of students with different backgrounds facing the experience of being working by projects and in a project. These students are graduated bachelor engineering are inexperienced in the project management field and they play this course on a time-shared manner along with other activities. The goal of this experience is to increase the competence levels acquired by using an structured web based portfolio tool helping to reinforce how relevant different project management approaches can result for final products and how important it becomes to maintain the integration along the project. Monitoring is carried out by means of have a look on how the work is being done and measuring different technical parameters per participant. The use of this information could make possible to bring additional information to the students involved in terms of their individual competencies and the identification of new opportunities of personal improvement. These capabilities are strongly requested by companies in their daily work as well as they can be very convenient too for students when they try to organize their PhD work.
Resumo:
The efficiency of power optimization tools depends on information on design power provided by the power estimation models. Power models targeting different power groups can enable fast identification of the most power consuming parts of design and their properties. The accuracy of these estimation models is highly dependent on the accuracy of the method used for their characterization. The highest precision is achieved by using physical onboard measurements. In this paper, we present a measurement methodology that is primarily aimed at calibrating and validating high-level dynamic power estimation models. The measurements have been carefully designed to enable the separation of the interconnect power from the logic power and the power of the clock circuitry, so that each of these power groups can be used for the corresponding model validation. The standard measurement uncertainty is lower than 2% of the measured value even with a very small number of repeated measurements. Additionally, the accuracy of a commercial low-level power estimation tool has been also assessed for comparison purposes. The results indicate that the tool is not suitable for power estimation of data path-oriented designs.
Resumo:
Considering the measurement procedures recommended by the ICNIRP, this communication is a proposal for a measurement procedure based in the maximum peak values of equivalent plane wave power density. This procedure has been included in a project being developed in Leganés, Spain. The project plans to deploy a real time monitoring system for RF to provide the city with a useful tool to adapt the environmental EM conditions to the new regulations approved. A first stage consisting of 105 measurement points has been finished and all the values are under the threshold of the regulation.
Resumo:
Selling on credit is rather frequent in Mediterranean countries. Its generalized use can lead to excessive enlargements of the payment periods and consequently can deteriorate the profitability of firms. In spite of the relevance of this problem there are few empirical researches. This work intends to fill this gap and to shed light on the factors related to the extension of trade credit. In the theoretical and empirical literature, different motives have been proposed to explain this issue: a mechanism to reduce transaction costs, a financial alternative to the bank system and an additional tool to improve commercial activities. To contrast these ideas a panel of 388 firms of the Spanish agrofood industry has been taken, and static and dynamic regression models have been estimated by using robust methods to heteroskedasticity, autocorrelation and endogeneity of the explanatory variables. The results confirm that trade credit receivable is associated with more active firms and with cheaper bank financing. Other factors with positive relationships are short-term bank debts and accounts payable. These findings are consistent with commercial motives, rather than a pure financial view, in the sense that financial distressed producers extend trade credit as a way of promoting their products and in turn increasing their sales.
Resumo:
The quality and the reliability of the power generated by large grid-connected photovoltaic (PV) plants are negatively affected by the source characteristic variability. This paper deals with the smoothing of power fluctuations because of geographical dispersion of PV systems. The fluctuation frequency and the maximum fluctuation registered at a PV plant ensemble are analyzed to study these effects. We propose an empirical expression to compare the fluctuation attenuation because of both the size and the number of PV plants grouped. The convolution of single PV plants frequency distribution functions has turned out to be a successful tool to statistically describe the behavior of an ensemble of PV plants and determine their maximum output fluctuation. Our work is based on experimental 1-s data collected throughout 2009 from seven PV plants, 20 MWp in total, separated between 6 and 360 km.
Resumo:
La tecnología ha cambiado el mundo, pero las consecuencias de estos cambios en la sociedad no siempre se han pronosticado bien. Las Tecnologías de la Información transformaron el método de producción industrial. La nueva industria produce ideas y conceptos, no objetos. Este cambio ha dado como resultado una sociedad dualizada, ha desaparecido gran parte de la clase media y han aumentado las diferencias entre la clase alta y la baja. Las exigencias educativas de los nuevos puestos de trabajo innovadores son superiores a los de la industria tradicional, pero inferiores en los puestos de trabajo de producción. Además, el número de puestos de trabajo disponibles de este tipo es menor que en la industria tradicional, se necesita menos mano de obra, los procesos se pueden automatizar, las tareas mecánicas se aprenden en poco tiempo y son trabajos temporales, cuyo número dependerá de la demanda global. Para que el proceso de innovación funcione, las empresas se reúnen en las zonas financieras de grandes ciudades, como Nueva York o Londres, que fueron las primeras con acceso a las redes de telecomunicación. De esta manera se producen sinergias que contribuyen a mejorar el proceso innovador global. Estas ideas y conceptos que cambian el mundo necesitan de este entorno de producción, que no puede ser replicado, y son tan importantes que su acceso está restringido para la mayor parte del mundo por distintos mecanismos de control. El despliegue de las redes de telecomunicaciones inalámbricas ha sido enorme en los últimos años. El cliente busca llamar desde cualquier lugar y llevar un acceso a Internet en teléfono móvil. Para conseguirlo, las operadoras de telefonía móvil necesitan poner antenas de telefonía móvil en las ciudades, pero la instalación cerca de edificios no está siendo fácil. Pocos quieren tener una antena cerca por los problemas de salud de las personas que padecen los que ya viven o trabajan cerca de una. Los efectos del electromagnetismo en los seres humanos no están claros y provocan desconfianza hacia las antenas. La digitalización de los contenidos, que ha sido necesaria para transmitir contenido en Internet, permite que cualquier persona con un ordenador y una conexión a Internet pueda publicar un disco, una película o un libro. Pero esa persona también puede copiar los originales y enviarlos a cualquier lugar del mundo sin el permiso del autor. Con el fin de controlar la copia no autorizada, los derechos de autor se están usando para cambiar leyes e incluir sistemas de censura en Internet. Estos sistemas permiten a los autores eliminar el contenido ilegal, pero también pueden ser usados para censurar cualquier tipo de información. El control de la información es poder y usarlo de una manera o de otra afecta a todo el planeta. El problema no es la tecnología, que es solo una herramienta, es la forma que tienen los gobiernos y las grandes empresas de usarlo. Technology has changed the world, but the consequences of these changes in society have not always been well predicted. The Information Technology transformed the industrial production method. The new industry produces ideas and concepts, not objects. This change has resulted in a society dualized, most of the middle class has disappeared and the differences between high and low class have increased. The educational requirements of new innovative jobs are higher than the ones of the traditional industry, but lower in production jobs. Moreover, the number of available jobs of this type is lower than in the traditional industry, it takes less manpower, processes can be automated, mechanical tasks are learned in a short time and jobs are temporary, whose number depends on global demand. For the innovation process works, companies meet in the business districts of large cities, like New York or London, which were the first with access to telecommunications networks. This will produce synergies that improve the overall innovation process. These ideas and concepts that change the world need this production environment, which cannot be replicated, and are so important that their access is restricted to most of the world by different control mechanisms. The deploy of wireless telecommunications networks has been enormous in recent years. The client seeks to call from anywhere and to bring Internet access in his mobile phone. To achieve this, mobile operators need to put cell towers in cities, but the installation near buildings is not being easy. Just a few want to have an antenna closely because of the health problems suffered by people who already live or work near one. The effects of electromagnetism in humans are unclear and cause distrust of antennas. The digitization of content, which has been necessary to transmit Internet content, allows anyone with a computer and an Internet connection to be able to publish an album, a movie or a book. But that person can also copy the originals and send them anywhere in the world without the author's permission. In order to control the unauthorized copying, copyright is being used to change laws and include Internet censorship systems. These systems allow authors to eliminate illegal content, but may also be used to censor any information. The control of knowledge is power and using it in one way or another affects the whole planet. The problem is not technology, which is just a tool, but the way that governments and large corporations use it.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
Europe needs to restructure its energy system. The aim to decrease the reliance on fossil fuels to a higher dependence on renewable energy has now been imposed by The European Commission. In order to achieve this goal there is a great interest in Norway to become "The Green Battery of Europe". In the pursuit of this goal a GIS-tool was created to investigate the pump storage potential in Norway. The tool searches for possible connections between existing reservoirs and dams with the criteria selected by the user. The aim of this thesis was to test the tool and see if the results suggested were plausible, develop a cost calculation method for the PSH lines, and make suggestions for further development of the tool. During the process the tool presented many non-feasible pumped storage hydropower (PSH) connections. The area of Telemark was chosen for the more detailed study. The results were discussed and some improvements were suggested for further development of the tool. Also a sensitivity test was done to see which of the parameters set by the user are the most relevant for the PSH connection suggestion. From a range of the most promising PSH plants suggested by the tool, the one between Songavatn and Totak was chosen for a case study, where there already exists a power plant between both reservoirs. A new Pumped Storage Plant was designed with a power production of 1200 MW. There are still many topics open to discussion, such as how to deal with environmental restrictions, or how to deal with inflows and outflows of the reservoirs from the existing power plants. Consequently the GIS-tool can be a very useful tool to establish the best possible connections between existing reservoirs and dams, but it still needs a deep study and the creation of new parameters for the user.
Resumo:
System Advisor Model is a software tool develped by National Renewable Laboratory (NREL), Department Of Energy, USA to design Solar Power Plants.
Resumo:
Electrical Protection systems and Automatic Voltage Regulators (AVR) are essential components of actual power plants. Its installation and setting is performed during the commissioning, and it needs extensive experience since any failure in this process or in the setting, may entails some risk not only for the generator of the power plant, but also for the reliability of the power grid. In this paper, a real time power plant simulation platform is presented as a tool for improving the training and learning process on electrical protections and automatic voltage regulators. The activities of the commissioning procedure which can be practiced are described, and the applicability of this tool for improving the comprehension of this important part of the power plants is discussed. A commercial AVR and a multifunction protective relay have been tested with satisfactory results.
Resumo:
Simulation of satellite subsystems behaviour is extramely important in the design at early stages. The subsystems are normally simulated in the both ways : isolated and as part of more complex simulation that takes into account imputs from other subsystems (concurrent design). In the present work, a simple concurrent simulation of the power subsystem of a microsatellite, UPMSat-2, is described. The aim of the work is to obtain the performance profile of the system (battery charging level, power consumption by the payloads, power supply from solar panels....). Different situations such as battery critical low or high level, effects of high current charging due to the low temperature of solar panels after eclipse,DoD margins..., were analysed, and different safety strategies studied using the developed tool (simulator) to fulfil the mission requirements. Also, failure cases were analysed in order to study the robustness of the system. The mentioned simulator has been programed taking into account the power consumption performances (average and maximum consumptions per orbit/day) of small part of the subsystem (SELEX GALILEO SPVS modular generators built with Azur Space solar cells, SAFT VES16 6P4S Li-ion battery, SSBV magnetometers, TECNOBIT and DATSI/UPM On Board Data Handling -OBDH-...). The developed tool is then intended to be a modular simulator, with the chance of use any other components implementing some standard data.
Resumo:
Forecasting the AC power output of a PV plant accurately is important both for plant owners and electric system operators. Two main categories of PV modeling are available: the parametric and the nonparametric. In this paper, a methodology using a nonparametric PV model is proposed, using as inputs several forecasts of meteorological variables from a Numerical Weather Forecast model, and actual AC power measurements of PV plants. The methodology was built upon the R environment and uses Quantile Regression Forests as machine learning tool to forecast AC power with a confidence interval. Real data from five PV plants was used to validate the methodology, and results show that daily production is predicted with an absolute cvMBE lower than 1.3%.
Resumo:
In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain