21 resultados para Personal data
em Universidad Politécnica de Madrid
Resumo:
Personal data about users (customers) is a key component for enterprises and large organizations. Its correct analysis and processing can produce relevant knowledge to achieve different business goals. For example, the monetisation of this data has become a valuable asset for many companies, such as Google, Facebook or Twitter, that obtain huge profits mainly from targeted advertising.
Resumo:
En los últimos años la sociedad está experimentando una serie de cambios. Uno de estos cambios es la datificación (“datafication” en inglés). Este término puede ser definido como la transformación sistemática de aspectos de la vida cotidiana de las personas en datos procesados por ordenadores. Cada día, a cada minuto y a cada segundo, cada vez que alguien emplea un dispositivo digital,hay datos siendo guardados en algún lugar. Se puede tratar del contenido de un correo electrónico pero también puede ser el número de pasos que esa persona ha caminado o su historial médico. El simple almacenamiento de datos no proporciona un valor añadido por si solo. Para extraer conocimiento de los datos, y por tanto darles un valor, se requiere del análisis de datos. La ciencia de los datos junto con el análisis de datos se está volviendo cada vez más popular. Hoy en día, se pueden encontrar millones de web APIs estadísticas; estas APIs ofrecen la posibilidad de analizar tendencias o sentimientos presentes en las redes sociales o en internet en general. Una de las redes sociales más populares, Twitter, es pública. Cada mensaje, o tweet, publicado puede ser visto por cualquier persona en el mundo, siempre y cuando posea una conexión a internet. Esto hace de Twitter un medio interesante a la hora de analizar hábitos sociales o perfiles de consumo. Es en este contexto en que se engloba este proyecto. Este trabajo, combinando el análisis estadístico de datos y el análisis de contenido, trata de extraer conocimiento de tweets públicos de Twitter. En particular tratará de establecer si el género es un factor influyente en las relaciones entre usuarios de Twitter. Para ello, se analizará una base de datos que contiene casi 2.000 tweets. En primer lugar se determinará el género de los usuarios mediante web APIs. En segundo lugar se empleará el contraste de hipótesis para saber si el género influye en los usuarios a la hora de relacionarse con otros usuarios. Finalmente se construirá un modelo estadístico para predecir el comportamiento de los usuarios de Twitter en relación a su género.
Resumo:
Personal data is a key asset for many companies, since this is the essence in providing personalized services. Not all companies, and specifically new entrants to the markets, have the opportunity to access the data they need to run their business. In this paper, we describe a comprehensive personal data framework that allows service providers to share and exchange personal data and knowledge about users, while facilitating users to decide who can access which data and why. We analyze the challenges related to personal data collection, integration, retrieval, and identity and privacy management, and present the framework architecture that addresses them. We also include the validation of the framework in a banking scenario, where social and financial data is collected and properly combined to generate new socio-economic knowledge about users that is then used by a personal lending service.
Resumo:
Linked Data is not always published with a license. Sometimes a wrong license type is used, like a license for software, or it is not expressed in a standard, machine readable manner. Yet, Linked Data resources may be subject to intellectual property and database laws, may contain personal data subject to privacy restrictions or may even contain important trade secrets. The proper declaration of which rights are held, waived or licensed is a must for the lawful use of Linked Data at its different granularity levels, from the simple RDF statement to a dataset or a mapping. After comparing the current practice with the actual needs, six research questions are posed.
Resumo:
Technological progress has profoundly changed the way personal data are collected, accessed and used. Those data make possible unprecedented customization of advertising which, in turn, is the business model adopted by many of the most successful Internet companies. Yet measuring the value being generated is still a complex task. This paper presents a review of the literature on this subject. It has been found that the economic analysis of personal information has been conducted up to now from a qualitative perspective mainly linked to privacy issues. A better understanding of a quantitative approach to this topic is urgently needed.
Resumo:
Currently personal data gathering in online markets is done on a far larger scale and much cheaper and faster than ever before. Within this scenario, a number of highly relevant companies for whom personal data is the key factor of production have emerged. However, up to now, the corresponding economic analysis has been restricted primarily to a qualitative perspective linked to privacy issues. Precisely, this paper seeks to shed light on the quantitative perspective, approximating the value of personal information for those companies that base their business model on this new type of asset. In the absence of any systematic research or methodology on the subject, an ad hoc procedure is developed in this paper. It starts with the examination of the accounts of a number of key players in online markets. This inspection first aims to determine whether the value of personal information databases is somehow reflected in the firms’ books, and second to define performance measures able to capture this value. After discussing the strengths and weaknesses of possible approaches, the method that performs best under several criteria (revenue per data record) is selected. From here, an estimation of the net present value of personal data is derived, as well as a slight digression into regional differences in the economic value of personal information.
Resumo:
Linked Data assets (RDF triples, graphs, datasets, mappings...) can be object of protection by the intellectual property law, the database law or its access or publication be restricted by other legal reasons (personal data pro- tection, security reasons, etc.). Publishing a rights expression along with the digital asset, allows the rightsholder waiving some or all of the IP and database rights (leaving the work in the public domain), permitting some operations if certain conditions are satisfied (like giving attribution to the author) or simply reminding the audience that some rights are reserved.
Resumo:
Los continuos avances tecnológicos están trayendo consigo nuevas formas de almacenar, tratar y comunicar datos personales. Es necesario repensar el derecho fundamental a la protección de datos, y arbitrar mecanismos para adaptarlo a las nuevas formas de tratamiento. a nivel europeo se está trabajando en una nueva propuesta de regulación que consideramos, en general, muy apropiada para afrontar los nuevos retos en esta materia. para ejemplificar todo esto, en el presente estudio se plantea de forma detallada el caso de la computación en nube, sus principales características y algunas preocupaciones acerca de los riesgos potenciales que su utilización trae consigo. Abstract: Rapid technological developments are bringing new ways to store, process and communicate personal data. We need to rethink the fundamental right to data protection and adapt it to new forms of treatment. there is a new «european» proposal for a regulation on the protection of individuals with regard to the processing of personal data, well suited to meet the new challenges. this study offers one example of this: the cloud computing, its main characteristics and some concerns about the potential risks that its use entails.
Resumo:
Podemos definir la sociedad como un sistema complejo que emerge de la cooperación y coordinación de billones de individuos y centenares de países. En este sentido no vivimos en una isla sino que estamos integrados en redes sociales que influyen en nuestro comportamiento. En esta tesis doctoral, presentamos un modelo analítico y una serie de estudios empíricos en los que analizamos distintos procesos sociales dinámicos desde una perspectiva de la teoría de redes complejas. En primer lugar, introducimos un modelo para explorar el impacto que las redes sociales en las que vivimos inmersos tienen en la actividad económica que transcurre sobre ellas, y mas concretamente en hasta qué punto la estructura de estas redes puede limitar la meritocracia de una sociedad. Como concepto contrario a meritocracia, en esta tesis, introducimos el término topocracia. Definimos un sistema como topocrático cuando la influencia o el poder y los ingresos de los individuos vienen principalmente determinados por la posición que ocupan en la red. Nuestro modelo es perfectamente meritocrático para redes completamente conectadas (todos los nodos están enlazados con el resto de nodos). Sin embargo nuestro modelo predice una transición hacia la topocracia a medida que disminuye la densidad de la red, siendo las redes poco densascomo las de la sociedad- topocráticas. En este modelo, los individuos por un lado producen y venden contenidos, pero por otro lado también distribuyen los contenidos producidos por otros individuos mediando entre comprador y vendedor. La producción y distribución de contenidos definen dos medios por los que los individuos reciben ingresos. El primero de ellos es meritocrático, ya que los individuos ingresan de acuerdo a lo que producen. Por el contrario el segundo es topocrático, ya que los individuos son compensados de acuerdo al número de cadenas mas cortas de la red que pasan a través de ellos. En esta tesis resolvemos el modelo computacional y analíticamente. Los resultados indican que un sistema es meritocrático solamente si la conectividad media de los individuos es mayor que una raíz del número de individuos que hay en el sistema. Por tanto, a la luz de nuestros resultados la estructura de la red social puede representar una limitación para la meritocracia de una sociedad. En la segunda parte de esta tesis se presentan una serie de estudios empíricos en los que se analizan datos extraídos de la red social Twitter para caracterizar y modelar el comportamiento humano. En particular, nos centramos en analizar conversaciones políticas, como las que tienen lugar durante campañas electorales. Nuestros resultados indican que la atención colectiva está distribuida de una forma muy heterogénea, con una minoría de cuentas extremadamente influyente. Además, la capacidad de los individuos para diseminar información en Twitter está limitada por la estructura y la posición que ocupan en la red de seguidores. Por tanto, de acuerdo a nuestras observaciones las redes sociales de Internet no posibilitan que la mayoría sea escuchada por la mayoría. De hecho, nuestros resultados implican que Twitter es topocrático, ya que únicamente una minoría de cuentas ubicadas en posiciones privilegiadas en la red de seguidores consiguen que sus mensajes se expandan por toda la red social. En conversaciones políticas, esta minoría de cuentas influyentes se compone principalmente de políticos y medios de comunicación. Los políticos son los mas mencionados ya que la gente les dirige y se refiere a ellos en sus tweets. Mientras que los medios de comunicación son las fuentes desde las que la gente propaga información. En un mundo en el que los datos personales quedan registrados y son cada día mas abundantes y precisos, los resultados del modelo presentado en esta tesis pueden ser usados para fomentar medidas que promuevan la meritocracia. Además, los resultados de los estudios empíricos sobre Twitter que se presentan en la segunda parte de esta tesis son de vital importancia para entender la nueva "sociedad digital" que emerge. En concreto hemos presentado resultados relevantes que caracterizan el comportamiento humano en Internet y que pueden ser usados para crear futuros modelos. Abstract Society can be defined as a complex system that emerges from the cooperation and coordination of billions of individuals and hundreds of countries. Thus, we do not live in social vacuum and the social networks in which we are embedded inevitably shapes our behavior. Here, we present an analytical model and several empirical studies in which we analyze dynamical social systems through a network science perspective. First, we introduce a model to explore how the structure of the social networks underlying society can limit the meritocracy of the economies. Conversely to meritocracy, in this work we introduce the term topocracy. We say that a system is topocratic if the compensation and power available to an individual is determined primarily by her position in a network. Our model is perfectly meritocratic for fully connected networks but becomes topocratic for sparse networks-like the ones in society. In the model, individuals produce and sell content, but also distribute the content produced by others when they belong to the shortest path connecting a buyer and a seller. The production and distribution of content defines two channels of compensation: a meritocratic channel, where individuals are compensated for the content they produce, and a topocratic channel, where individual compensation is based on the number of shortest paths that go through them in the network. We solve the model analytically and show that the distribution of payoffs is meritocratic only if the average degree of the nodes is larger than a root of the total number of nodes. Hence, in the light of our model, the sparsity and structure of networks represents a fundamental constraint to the meritocracy of societies. Next, we present several empirical studies that use data gathered from Twitter to analyze online human behavioral patterns. In particular, we focus on political conversations such as electoral campaigns. We found that the collective attention is highly heterogeneously distributed, as there is a minority of extremely influential accounts. In fact, the ability of individuals to propagate messages or ideas through the platform is constrained by the structure of the follower network underlying the social media and the position they occupy on it. Hence, although people have argued that social media can allow more voices to be heard, our results suggest that Twitter is highly topocratic, as only the minority of well positioned users are widely heard. This minority of influential accounts belong mostly to politicians and traditional media. Politicians tend to be the most mentioned, while media are the sources of information from which people propagate messages. We also propose a methodology to study and measure the emergence of political polarization from social interactions. To this end, we first propose a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we illustrate our methodology by applying it to Twitter data. In a world where personal data is increasingly available, the results of the analytical model introduced in this work can be used to enhance meritocracy and promote policies that help to build more meritocratic societies. Moreover, the results obtained in the latter part, where we have analyzed Twitter, are key to understand the new data-driven society that is emerging. In particular, we have presented relevant information that can be used to benchmark future models for online communication systems or can be used as empirical rules characterizing our online behavior.
Resumo:
Personalization has become a key factor for the success of new ICT services. However, the personal information required is not always available in a single site, but scattered in heterogeneous sources, and extracting knowledge from raw information is not an easy job. As a result, many organizations struggle to obtain knowledge on their users useful enough for their business purposes. This paper introduces a comprehensive personal data framework that opens the knowledge extraction process up to collaboration by the involvement of new actors, while enabling users to monitor and control it. The contributions have been validated in a financial services scenario where socioeconomic knowledge on some users is generated by tapping into their social network and used to assists them in raising money from their friends.
Resumo:
Este proyecto tiene como intención llevar a cabo el desarrollo de una aplicación basada en tecnologías Web utilizando Spring Framework, una infraestructura de código abierto para la plataforma Java. Se realizará primero un estudio teórico sobre las características de Spring para luego poder implementar una aplicación utilizando dicha tecnología como ejemplo práctico. La primera parte constará de un análisis sobre las características más significativas de Spring, recogiendo de esta forma información sobre todos los componentes del framework necesarios para desarrollar una aplicación genérica. El objetivo es descubrir y analizar cómo Spring facilita la implementación de un proyecto con arquitectura MVC y cómo permite integrar seguridad, internacionalización y otros conceptos de forma transparente. La segunda parte, el desarrollo de la aplicación web, sirve como demostración práctica de cómo utilizar los conocimientos recogidos sobre Spring. Se desarrollará una aplicación que gestiona un recetario generado por una comunidad de usuarios. La aplicación contiene un registro de usuarios que deberán autenticarse para poder ver sus datos personales y modificarlos si lo desean. Dependiendo del tipo de usuarios, tendrán acceso a distintas zonas de la aplicación y tendrán un rango distinto de acciones disponibles. Las acciones principales son la visualización de recetas, la creación de recetas, la modificación o eliminación de recetas propias y la modificación o eliminación de recetas de los demás usuarios. Las recetas constarán de un nombre, una descripción, una fotografía del resultado, tiempos estimados, dificultad estimada, una lista de ingredientes y sus cantidades y finalmente una serie de pasos con fotografías demostrativas si se desea añadir. Los administradores, un tipo específico de usuarios, podrán acceder a una lista de usuarios para monitorizarlos, modificarlos o añadir y quitarles permisos. ABSTRACT The purpose of this project is the development of an application based on Web technologies with the use of Spring Framework, an open-source application framework for the Java platform. A theoretical study on the characteristics of Spring will be performed first, followed by the implementation of an application using said technology to show as object lesson. The first part consists of an analysis of the most significant features of Spring, thus collecting information on all components of the framework necessary to develop a generic app. The goal is to discover and analyze how Spring helps develop a project based on a MVC architecture and how it allows seamless integration of security, internationalization and other concepts. The second part, the development of the web application, serves as a practical demonstration of how to use the knowledge gleaned about Spring. An application will be developed to manage a cookbook generated by a community of users. The application has a set of users who have to authenticate themselves to be able to see their personal data and modify it if they wish to do so. Depending on the user type, the user will be able to access different parts of the application and will have a different set of possible actions. The main possible actions are: creation recipes, modification or deletion of owned recipes and the modification and deletion of any recipe. The recipes consist its name, a description, a photograph, estimated times and difficulties, a list of ingredients along with their quantities and lastly a series of steps to follow along with demonstrative photographs if desired; and other information such as categories or difficulties. The administrators, a specific type of users, will have access to a list of users where they can monitor them, modify them or grant and remove privileges.
Resumo:
El extraordinario auge de las nuevas tecnologías de la información, el desarrollo de la Internet de las Cosas, el comercio electrónico, las redes sociales, la telefonía móvil y la computación y almacenamiento en la nube, han proporcionado grandes beneficios en todos los ámbitos de la sociedad. Junto a éstos, se presentan nuevos retos para la protección y privacidad de la información y su contenido, como la suplantación de personalidad y la pérdida de la confidencialidad e integridad de los documentos o las comunicaciones electrónicas. Este hecho puede verse agravado por la falta de una frontera clara que delimite el mundo personal del mundo laboral en cuanto al acceso de la información. En todos estos campos de la actividad personal y laboral, la Criptografía ha jugado un papel fundamental aportando las herramientas necesarias para garantizar la confidencialidad, integridad y disponibilidad tanto de la privacidad de los datos personales como de la información. Por otro lado, la Biometría ha propuesto y ofrecido diferentes técnicas con el fin de garantizar la autentificación de individuos a través del uso de determinadas características personales como las huellas dáctilares, el iris, la geometría de la mano, la voz, la forma de caminar, etc. Cada una de estas dos ciencias, Criptografía y Biometría, aportan soluciones a campos específicos de la protección de datos y autentificación de usuarios, que se verían enormemente potenciados si determinadas características de ambas ciencias se unieran con vistas a objetivos comunes. Por ello es imperativo intensificar la investigación en estos ámbitos combinando los algoritmos y primitivas matemáticas de la Criptografía con la Biometría para dar respuesta a la demanda creciente de nuevas soluciones más técnicas, seguras y fáciles de usar que potencien de modo simultáneo la protección de datos y la identificacíón de usuarios. En esta combinación el concepto de biometría cancelable ha supuesto una piedra angular en el proceso de autentificación e identificación de usuarios al proporcionar propiedades de revocación y cancelación a los ragos biométricos. La contribución de esta tesis se basa en el principal aspecto de la Biometría, es decir, la autentificación segura y eficiente de usuarios a través de sus rasgos biométricos, utilizando tres aproximaciones distintas: 1. Diseño de un esquema criptobiométrico borroso que implemente los principios de la biometría cancelable para identificar usuarios lidiando con los problemas acaecidos de la variabilidad intra e inter-usuarios. 2. Diseño de una nueva función hash que preserva la similitud (SPHF por sus siglas en inglés). Actualmente estas funciones se usan en el campo del análisis forense digital con el objetivo de buscar similitudes en el contenido de archivos distintos pero similares de modo que se pueda precisar hasta qué punto estos archivos pudieran ser considerados iguales. La función definida en este trabajo de investigación, además de mejorar los resultados de las principales funciones desarrolladas hasta el momento, intenta extender su uso a la comparación entre patrones de iris. 3. Desarrollando un nuevo mecanismo de comparación de patrones de iris que considera tales patrones como si fueran señales para compararlos posteriormente utilizando la transformada de Walsh-Hadarmard. Los resultados obtenidos son excelentes teniendo en cuenta los requerimientos de seguridad y privacidad mencionados anteriormente. Cada uno de los tres esquemas diseñados han sido implementados para poder realizar experimentos y probar su eficacia operativa en escenarios que simulan situaciones reales: El esquema criptobiométrico borroso y la función SPHF han sido implementados en lenguaje Java mientras que el proceso basado en la transformada de Walsh-Hadamard en Matlab. En los experimentos se ha utilizado una base de datos de imágenes de iris (CASIA) para simular una población de usuarios del sistema. En el caso particular de la función de SPHF, además se han realizado experimentos para comprobar su utilidad en el campo de análisis forense comparando archivos e imágenes con contenido similar y distinto. En este sentido, para cada uno de los esquemas se han calculado los ratios de falso negativo y falso positivo. ABSTRACT The extraordinary increase of new information technologies, the development of Internet of Things, the electronic commerce, the social networks, mobile or smart telephony and cloud computing and storage, have provided great benefits in all areas of society. Besides this fact, there are new challenges for the protection and privacy of information and its content, such as the loss of confidentiality and integrity of electronic documents and communications. This is exarcebated by the lack of a clear boundary between the personal world and the business world as their differences are becoming narrower. In both worlds, i.e the personal and the business one, Cryptography has played a key role by providing the necessary tools to ensure the confidentiality, integrity and availability both of the privacy of the personal data and information. On the other hand, Biometrics has offered and proposed different techniques with the aim to assure the authentication of individuals through their biometric traits, such as fingerprints, iris, hand geometry, voice, gait, etc. Each of these sciences, Cryptography and Biometrics, provides tools to specific problems of the data protection and user authentication, which would be widely strengthen if determined characteristics of both sciences would be combined in order to achieve common objectives. Therefore, it is imperative to intensify the research in this area by combining the basics mathematical algorithms and primitives of Cryptography with Biometrics to meet the growing demand for more secure and usability techniques which would improve the data protection and the user authentication. In this combination, the use of cancelable biometrics makes a cornerstone in the user authentication and identification process since it provides revocable or cancelation properties to the biometric traits. The contributions in this thesis involve the main aspect of Biometrics, i.e. the secure and efficient authentication of users through their biometric templates, considered from three different approaches. The first one is designing a fuzzy crypto-biometric scheme using the cancelable biometric principles to take advantage of the fuzziness of the biometric templates at the same time that it deals with the intra- and inter-user variability among users without compromising the biometric templates extracted from the legitimate users. The second one is designing a new Similarity Preserving Hash Function (SPHF), currently widely used in the Digital Forensics field to find similarities among different files to calculate their similarity level. The function designed in this research work, besides the fact of improving the results of the two main functions of this field currently in place, it tries to expand its use to the iris template comparison. Finally, the last approach of this thesis is developing a new mechanism of handling the iris templates, considering them as signals, to use the Walsh-Hadamard transform (complemented with three other algorithms) to compare them. The results obtained are excellent taking into account the security and privacy requirements mentioned previously. Every one of the three schemes designed have been implemented to test their operational efficacy in situations that simulate real scenarios: The fuzzy crypto-biometric scheme and the SPHF have been implemented in Java language, while the process based on the Walsh-Hadamard transform in Matlab. The experiments have been performed using a database of iris templates (CASIA-IrisV2) to simulate a user population. The case of the new SPHF designed is special since previous to be applied i to the Biometrics field, it has been also tested to determine its applicability in the Digital Forensic field comparing similar and dissimilar files and images. The ratios of efficiency and effectiveness regarding user authentication, i.e. False Non Match and False Match Rate, for the schemes designed have been calculated with different parameters and cases to analyse their behaviour.
Resumo:
Los nuevos productos y servicios de “Internet de las Cosas” nos harán más eficientes, con una mayor capacidad de actuación y una mejor comprensión de nuestro entorno. Se desarrollarán nuevas ayudas técnicas que permitirán prolongar nuestra vida activa, y muchas ventajas que hoy día nos costaría imaginar. Sin embargo coexistiremos con una gran cantidad de dispositivos que recopilarán información sobre nuestra actividad, costumbres, preferencias, etc., que podrían amenazar nuestra privacidad. La desconfianza que estos riesgos podrían generar en las personas, actuaría como una barrera que podría dificultar el pleno desarrollo de esta nueva gama de productos y servicios. Internet de las Cosas, alcanza su significado más representativo con las Ciudades Inteligentes (Smart Cities) que proporcionan las herramientas necesarias para mejorar la gestión de las ciudades modernas de una manera mucho más eficiente. Estas herramientas necesitan recolectar información de los ciudadanos abriendo la posibilidad de someterlos a un seguimiento. Así, las políticas de seguridad y privacidad deben desarrollarse para satisfacer y gestionar la heterogeneidad legislativa en torno a los servicios prestados y cumplir con las leyes del país en el que se proporcionan estos servicios. El objetivo de esta tesis es aportar una posible solución para la garantizar la seguridad y privacidad de los datos personales en Internet de las Cosas, mediante técnicas que resulten de la colaboración entre las áreas empresarial, legislativa y tecnológica para dar confianza a todos los actores involucrados y resolver la posible colisión de intereses entre ellos, y también debe ser capaz de poder gestionar la heterogeneidad legislativa. Considerando que gran parte de estos servicios se canalizan a través de redes de sensores inalámbricos, y que estas redes tienen importantes limitaciones de recursos, se propone un sistema de gestión que además sea capaz de dar una cobertura de seguridad y privacidad justo a medida de las necesidades. ABSTRACT New products and services offered by the “Internet of Things” will make people more efficient and more able to understand the environment and take better decisions. New assistive technologies will allow people to extend their working years and many other advantages that currently are hard to foreseen. Nonetheless, we will coexist with a large number of devices collecting information about activities, habits, preferences, etc. This situation could threaten personal privacy. Distrust could be a barrier to the full development of these new products and services. Internet of Things reaches its most representative meaning by the Smart Cities providing the necessary solutions to improve the management of modern cities by means of more efficient tools. These tools require gathering citizens’ information about their activity, preferences, habits, etc. opening up the possibility of tracking them. Thus, privacy and security policies must be developed in order to satisfy and manage the legislative heterogeneity surrounding the services provided and comply with the laws of the country where they are provided. The objective of this thesis is to provide a feasible solution to ensure the security and privacy of personal data on the Internet of Things through resulting techniques from the collaboration between business, legislative and technological areas so as to give confidence to all stakeholders and resolve the possible conflict of interest between them, as well as to manage the legislative heterogeneity. Whereas most of these services are based on wireless sensor networks, and these networks have significant resource constraints, the proposed management system is also able to cover the security and privacy requirements considering those constrains.
Resumo:
Los servicios telemáticos han transformando la mayoría de nuestras actividades cotidianas y ofrecen oportunidades sin precedentes con características como, por ejemplo, el acceso ubicuo, la disponibilidad permanente, la independencia del dispositivo utilizado, la multimodalidad o la gratuidad, entre otros. No obstante, los beneficios que destacan en cuanto se reflexiona sobre estos servicios, tienen como contrapartida una serie de riesgos y amenazas no tan obvios, ya que éstos se nutren de y tratan con datos personales, lo cual suscita dudas respecto a la privacidad de las personas. Actualmente, las personas que asumen el rol de usuarios de servicios telemáticos generan constantemente datos digitales en distintos proveedores. Estos datos reflejan parte de su intimidad, de sus características particulares, preferencias, intereses, relaciones sociales, hábitos de consumo, etc. y lo que es más controvertido, toda esta información se encuentra bajo la custodia de distintos proveedores que pueden utilizarla más allá de las necesidades y el control del usuario. Los datos personales y, en particular, el conocimiento sobre los usuarios que se puede extraer a partir de éstos (modelos de usuario) se han convertido en un nuevo activo económico para los proveedores de servicios. De este modo, estos recursos se pueden utilizar para ofrecer servicios centrados en el usuario basados, por ejemplo, en la recomendación de contenidos, la personalización de productos o la predicción de su comportamiento, lo cual permite a los proveedores conectar con los usuarios, mantenerlos, involucrarlos y en definitiva, fidelizarlos para garantizar el éxito de un modelo de negocio. Sin embargo, dichos recursos también pueden utilizarse para establecer otros modelos de negocio que van más allá de su procesamiento y aplicación individual por parte de un proveedor y que se basan en su comercialización y compartición con otras entidades. Bajo esta perspectiva, los usuarios sufren una falta de control sobre los datos que les refieren, ya que esto depende de la voluntad y las condiciones impuestas por los proveedores de servicios, lo cual implica que habitualmente deban enfrentarse ante la disyuntiva de ceder sus datos personales o no acceder a los servicios telemáticos ofrecidos. Desde el sector público se trata de tomar medidas que protejan a los usuarios con iniciativas y legislaciones que velen por su privacidad y que aumenten el control sobre sus datos personales, a la vez que debe favorecer el desarrollo económico propiciado por estos proveedores de servicios. En este contexto, esta tesis doctoral propone una arquitectura y modelo de referencia para un ecosistema de intercambio de datos personales centrado en el usuario que promueve la creación, compartición y utilización de datos personales y modelos de usuario entre distintos proveedores, al mismo tiempo que ofrece a los usuarios las herramientas necesarias para ejercer su control en cuanto a la cesión y uso de sus recursos personales y obtener, en su caso, distintos incentivos o contraprestaciones económicas. Las contribuciones originales de la tesis son la especificación y diseño de una arquitectura que se apoya en un proceso de modelado distribuido que se ha definido en el marco de esta investigación. Éste se basa en el aprovechamiento de recursos que distintas entidades (fuentes de datos) ofrecen para generar modelos de usuario enriquecidos que cubren las necesidades específicas de terceras entidades, considerando la participación del usuario y el control sobre sus recursos personales (datos y modelos de usuario). Lo anterior ha requerido identificar y caracterizar las fuentes de datos con potencial de abastecer al ecosistema, determinar distintos patrones para la generación de modelos de usuario a partir de datos personales distribuidos y heterogéneos y establecer una infraestructura para la gestión de identidad y privacidad que permita a los usuarios expresar sus preferencias e intereses respecto al uso y compartición de sus recursos personales. Además, se ha definido un modelo de negocio de referencia que sustenta las investigaciones realizadas y que ha sido particularizado en dos ámbitos de aplicación principales, en concreto, el sector de publicidad en redes sociales y el sector financiero para la implantación de nuevos servicios. Finalmente, cabe destacar que las contribuciones de esta tesis han sido validadas en el contexto de distintos proyectos de investigación industrial aplicada y también en el marco de proyectos fin de carrera que la autora ha tutelado o en los que ha colaborado. Los resultados obtenidos han originado distintos méritos de investigación como dos patentes en explotación, la publicación de un artículo en una revista con índice de impacto y diversos artículos en congresos internacionales de relevancia. Algunos de éstos han sido galardonados con premios de distintas instituciones, así como en las conferencias donde han sido presentados. ABSTRACT Information society services have changed most of our daily activities, offering unprecedented opportunities with certain characteristics, such as: ubiquitous access, permanent availability, device independence, multimodality and free-of-charge services, among others. However, all the positive aspects that emerge when thinking about these services have as counterpart not-so-obvious threats and risks, because they feed from and use personal data, thus creating concerns about peoples’ privacy. Nowadays, people that play the role of user of services are constantly generating digital data in different service providers. These data reflect part of their intimacy, particular characteristics, preferences, interests, relationships, consumer behavior, etc. Controversy arises because this personal information is stored and kept by the mentioned providers that can use it beyond the user needs and control. Personal data and, in particular, the knowledge about the user that can be obtained from them (user models) have turned into a new economic asset for the service providers. In this way, these data and models can be used to offer user centric services based, for example, in content recommendation, tailored-products or user behavior, all of which allows connecting with the users, keeping them more engaged and involved with the provider, finally reaching customer loyalty in order to guarantee the success of a business model. However, these resources can be used to establish a different kind of business model; one that does not only processes and individually applies personal data, but also shares and trades these data with other entities. From that perspective, the users lack control over their referred data, because it depends from the conditions imposed by the service providers. The consequence is that the users often face the following dilemma: either giving up their personal data or not using the offered services. The Public Sector takes actions in order to protect the users approving, for example, laws and legal initiatives that reinforce privacy and increase control over personal data, while at the same time the authorities are also key players in the economy development that derives from the information society services. In this context, this PhD Dissertation proposes an architecture and reference model to achieve a user-centric personal data ecosystem that promotes the creation, sharing and use of personal data and user models among different providers, while offering users the tools to control who can access which data and why and if applicable, to obtain different incentives. The original contributions obtained are the specification and design of an architecture that supports a distributed user modelling process defined by this research. This process is based on leveraging scattered resources of heterogeneous entities (data sources) to generate on-demand enriched user models that fulfill individual business needs of third entities, considering the involvement of users and the control over their personal resources (data and user models). This has required identifying and characterizing data sources with potential for supplying resources, defining different generation patterns to produce user models from scattered and heterogeneous data, and establishing identity and privacy management infrastructures that allow users to set their privacy preferences regarding the use and sharing of their resources. Moreover, it has also been proposed a reference business model that supports the aforementioned architecture and this has been studied for two application fields: social networks advertising and new financial services. Finally, it has to be emphasized that the contributions obtained in this dissertation have been validated in the context of several national research projects and master thesis that the author has directed or has collaborated with. Furthermore, these contributions have produced different scientific results such as two patents and different publications in relevant international conferences and one magazine. Some of them have been awarded with different prizes.
Resumo:
Los nuevos productos y servicios de “Internet de las Cosas” nos harán más eficientes, con una mayor capacidad de actuación y una mejor comprensión de nuestro entorno. Se desarrollarán nuevas ayudas técnicas que permitirán prolongar nuestra vida activa, y muchas ventajas que hoy día nos costaría imaginar. Sin embargo coexistiremos con una gran cantidad de dispositivos que recopilarán información sobre nuestra actividad, costumbres, preferencias, etc., que podrían amenazar nuestra privacidad. La desconfianza que estos riesgos podrían generar en las personas, actuaría como una barrera que podría dificultar el pleno desarrollo de esta nueva gama de productos y servicios. Internet de las Cosas, alcanza su significado más representativo con las Ciudades Inteligentes (Smart Cities) que proporcionan las herramientas necesarias para mejorar la gestión de las ciudades modernas de una manera mucho más eficiente. Estas herramientas necesitan recolectar información de los ciudadanos abriendo la posibilidad de someterlos a un seguimiento. Así, las políticas de seguridad y privacidad deben desarrollarse para satisfacer y gestionar la heterogeneidad legislativa en torno a los servicios prestados y cumplir con las leyes del país en el que se proporcionan estos servicios. El objetivo de esta tesis es aportar una posible solución para la garantizar la seguridad y privacidad de los datos personales en Internet de las Cosas, mediante técnicas que resulten de la colaboración entre las áreas empresarial, legislativa y tecnológica para dar confianza a todos los actores involucrados y resolver la posible colisión de intereses entre ellos, y también debe ser capaz de poder gestionar la heterogeneidad legislativa. Considerando que gran parte de estos servicios se canalizan a través de redes de sensores inalámbricos, y que estas redes tienen importantes limitaciones de recursos, se propone un sistema de gestión que además sea capaz de dar una cobertura de seguridad y privacidad justo a medida de las necesidades. ABSTRACT New products and services offered by the “Internet of Things” will make people more efficient and more able to understand the environment and take better decisions. New assistive technologies will allow people to extend their working years and many other advantages that currently are hard to foreseen. Nonetheless, we will coexist with a large number of devices collecting information about activities, habits, preferences, etc. This situation could threaten personal privacy. Distrust could be a barrier to the full development of these new products and services. Internet of Things reaches its most representative meaning by the Smart Cities providing the necessary solutions to improve the management of modern cities by means of more efficient tools. These tools require gathering citizens’ information about their activity, preferences, habits, etc. opening up the possibility of tracking them. Thus, privacy and security policies must be developed in order to satisfy and manage the legislative heterogeneity surrounding the services provided and comply with the laws of the country where they are provided. The objective of this thesis is to provide a feasible solution to ensure the security and privacy of personal data on the Internet of Things through resulting techniques from the collaboration between business, legislative and technological areas so as to give confidence to all stakeholders and resolve the possible conflict of interest between them, as well as to manage the legislative heterogeneity. Whereas most of these services are based on wireless sensor networks, and these networks have significant resource constraints, the proposed management system is also able to cover the security and privacy requirements considering those constrains.