21 resultados para POLYPROPYLENE BLENDS

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High performance materials are needed for the reconstruction of such a singular building as a cathedral, since in addition to special mechanical properties, high self compact ability, high durability and high surface quality, are specified. Because of the project’s specifications, the use of polypropylene fiber-reinforced, self-compacting concrete was selected by the engineering office. The low quality of local materials and the lack of experience in applying macro polypropylene fiber for structural reinforcement with these components materials required the development of a pretesting program. To optimize the mix design, performance was evaluated following technical, economical and constructability criteria. Since the addition of fibers reduces concrete self-compactability, many trials were run to determine the optimal mix proportions. The variables introduced were paste volume; the aggregate skeleton of two or three fractions plus limestone filler; fiber type and dosage. Two mix designs were selected from the preliminary results. The first one was used as reference for self-compactability and mechanical properties. The second one was an optimized mix with a reduction in cement content of 20 kg/m3and fiber dosage of 1 kg/m3. For these mix designs, extended testing was carried out to measure the compression and flexural strength, modulus of elasticity, toughness, and water permeability resistance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study forms part of wider research conducted under a EU 7 th Framework Programme (COmputationally Driven design of Innovative CEment-based materials or CODICE). The ultimate aim is the multi-scale modelling of the variations in mechanical performance in degraded and non-degraded cementitious matrices. The model is being experimentally validated by hydrating the main tri-calcium silicate (T1-C3S) and bi-calcium silicate (β-C2S), phases present in Portland cement and their blends. The present paper discusses micro- and nanoscale studies of the cementitious skeletons forming during the hydration of C3S, C2S and 70 % / 30 % blends of both C3S/C2S and C2S/C3S with a water/cement ratio of 0.4. The hydrated pastes were characterized at different curing ages with 29 Si NMR, SEM/TEM/EDS, BET, and nanoindentation. The findings served as a basis for the micro- and nanoscale characterization of the hydration products formed, especially C-S-H gels. Differences were identified in composition, structure and mechanical behaviour (nanoindentation), depending on whether the gels formed in C3S or C2S pastes. The C3S gels had more compact morphologies, smaller BET-N2 specific surface area and lesser porosity than the gels from C2S-rich pastes. The results of nanoindentation tests appear to indicate that the various C-S-H phases formed in hydrated C3S and C2S have the same mechanical properties as those formed in Portland cement paste. Compared to the C3S sample, the hydrated C2S specimen was dominated by the loose-packed (LP) and the low-density (LD) C-S-H phases, and had a much lower content of the high density (HD) C-S-H phase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmentally friendly molybdenum disulfide (INT-MoS2) inorganic nanotubes were introduced into an isotactic polypropylene (iPP) polymer matrix to generate novel nanocomposite materials through an advantageous melt-processing route. The effects of INT-MoS2 content on the thermal, mechanical and tribological properties were investigated. The incorporation of INT-MoS2 generates notable performance enhancements through reinforcement effects, highly efficient nucleation activity and excellent lubricating ability in comparison with other nanoparticle fillers such as nanoclays, carbon nanotubes, silicon nitrides and halloysite nanotubes. It was shown that these INT-MoS2 nanocomposites can provide an effective balance between performance, cost effectiveness and processability, and should be of some interest in the area of multifunctional polymer nanocomposite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Babassu and camelina oils have been transesterified with methanol by the classical homogeneous basic catalysis method with good yields. The babassu fatty acid methyl ester (FAME) has been subjected to fractional distillation at vacuum, and the low boiling point fraction has been blended with two types of fossil kerosene, a straight-run atmospheric distillation cut (hydrotreated) and a commercial Jet-A1. The camelina FAME has been blended with the fossil kerosene without previous distillation. The blends of babassu biokerosene and Jet-A1 have met some of the specifications selected for study of the ASTM D1655 standard: smoke point, density, flash point, cloud point, kinematic viscosity, oxidative stability and lower heating value. On the other hand, the blends of babassu biokerosene and atmospheric distillation cut only have met the density parameter and the oxidative stability. The blends of camelina FAME and atmospheric distillation cut have met the following specifications: density, kinematic viscosity at −20 °C, and lower heating value. With these preliminary results, it can be concluded that it would be feasible to blend babassu and camelina biokerosenes prepared in this way with commercial Jet-A1 up to 10 vol % of the former, if these blends prove to accomplish all the ASTM D1655-09 standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The failure locus, the characteristics of the stress–strain curve and the damage localization patterns were analyzed in a polypropylene nonwoven fabric under in-plane biaxial deformation. The analysis was carried out by means of a homogenization model developed within the context of the finite element method. It provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element and takes into account the main deformation and damage mechanisms experimentally observed. It was found that the failure locus in the stress space was accurately predicted by the Von Mises criterion and failure took place by the localization of damage into a crack perpendicular to the main loading axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fast-growing power demand by portable electronic devices has promoted the increase of global production of portable PEM fuel cell, a quarter of them consist of direct methanol fuel cell (DMFC) units. These present the advantage of being fuelled directly with a liquid fuel, as well as direct ethanol fuel cells (DEFC) do.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On December 20th 2006 the European Commission approved a law proposal to include the civil aviation sector in the European market of carbon dioxide emission rights [European Union Emissions Trading System, EUETS). On July 8th 2009, the European Parliament and Conseil agreed that all flights leaving or landing in the EU airports starting from January 1st 2012 should be included in the EUETS. On November 19th 2008, the EU Directive 2008/101/CE [1] included the civil aviation activities in the EUETS, and this directive was transposed by the Spanish law 13/2010 of July 5th 2010 [2]. Thus, in 2012 the aviation sector should reduce their emissions to 97 % of the mean values registered in the period 2004-2006, and for 2013 these emission reductions should reach 95 % of the mean values for that same period. Trying to face this situation, the aviation companies are planning seriously the use of alternative jet fuels to reduce their greenhouse gas emissions and to lower their costs. However, some US airlines have issued a lawsuit before the European Court of Justice based in that this EU action violates a long standing worldwide aviation treaty, the Chicago convention of 1944, and also the Chinese aviation companies have rejected to pay any EU carbon dioxide tax [3]. Moreover, the USA Departments of Agriculture and Energy and the Navy will invest a total of up to $150 million over three years to spur production of aviation and marine biofuels for commercial and military applications [4]. However, the jet fuels should fulfill a set of extraordinarily sensitive properties to guarantee the safety of planes and passengers during all the flights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of hydrogen to natural gas could be a short-term alternative to nowadays fossil fuels as the emissions of greenhouse gases may be reduced. The aim of this study is to evaluate the performance and emissions of a park ignition engine fuelled with pure natural gas, pure hydrogen and different blends of hydrogen and natural gas (HCNG). The increase of the hydrogen fraction leads to variations in the cylinder pressure and CO2 emissions. In this work, a combustion model based on thermodynamic equations is used considering separated zones for the burned and unburned gases. The results show that the maximum cylinder pressure gets higher as the fraction of hydrogen in the blend increases. The presence of hydrogen in the blend leads to a drecrease in the CO2 emissions. Due to hydrogen properties, leaner fuel-air mixtures can be used along with the appropiate spark timing, leading to an engine emissions improvement without a performance worsening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of adding different ratios of inulin and extra virgin olive oil blends, formulated without (MPA) and with cryoprotectants (MPB), on texture properties of fresh mashed potatoes and frozen/thawed mashed potatoes was studied. Inulin and extra virgin olive oil behaved like soft ?llers, but inulin was associated with increased?brousness and extra virgin olive oil with increased creaminess. In the total dataset and frozen mashed potatoes, frozen/thawed mashed potatoes, and MPA subgroups, component 1 was a contrast between mechanical and surface textural attributes, whereas in MPB samples component 1 was determined by geometrical attributes. Addition of inulin at 30 g/kg and extra virgin olive oil at 45 g/kg is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of hydrogen to natural gas could be a short-term alternative to today’s fossil fuels, as greenhouse gas emissions may be reduced. The aim of this study is to evaluate the emissions and performance of a spark ignition engine fuelled by pure natural gas, pure hydrogen, and different blends of hydrogen and natural gas (HCNG). Increasing the hydrogen fraction leads to variations in cylinder pressure and CO2 emissions. In this study, a combustion model based on thermodynamic equations is used, considering separate zones for burned and unburned gases. The results show that the maximum cylinder pressure rises as the fraction of hydrogen in the blend increases. The presence of hydrogen in the blend leads to a decrease in CO2 emissions. Due to the properties of hydrogen, leaner fuel–air mixtures can be used along with the appropriate spark timing, leading to an improvement in engine emissions with no loss of performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of biofuels in the aviation sector has economic and environmental benefits. Among the options for the production of renewable jet fuels, hydroprocessed esters and fatty acids (HEFA) have received predominant attention in comparison with fatty acid methyl esters (FAME), which are not approved as additives for jet fuels. However, the presence of oxygen in methyl esters tends to reduce soot emissions and therefore particulate matter emissions. This sooting tendency is quantified in this work with an oxygen-extended sooting index, based on smoke point measurements. Results have shown considerable reduction in the sooting tendency for all biokerosenes (produced by transesterification and eventually distillation) with respect to fossil kerosenes. Among the tested biokerosenes, that made from palm kernel oil was the most effective one, and nondistilled methyl esters (from camelina and linseed oils) showed lower effectiveness than distilled biokerosenes to reduce the sooting tendency. These results may constitute an additional argument for the use of FAME’s as blend components of jet fuels. Other arguments were pointed out in previous publications, but some controversy has aroused over the use of these components. Some of the criticism was based on the fact that the methods used in our previous work are not approved for jet fuels in the standard methods and concluded that the use of FAME in any amount is, thus, inappropriate. However, some of the standard methods are not updated for considering oxygenated components (like the method for obtaining the lower heating value), and others are not precise enough (like the methods for measuring the freezing point), whereas some alternative methods may provide better reproducibility for oxygenated fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aviation companies are facing some problems that argue in favor of biofuels: Rising cost of traditional fuel: from 0.71 USD/gallon in May 2003 to 3.09 USD/gallon in January 2012. Environmental concerns: direct emissions from aviation account for about 3 % of the EU’s total greenhouse gas emissions. The International Civil Aviation Organization (ICAO) forecasts that by 2050 they could grow by a further 300-700 %. On December 20th 2006 the European Commission approved a law proposal to include the civil aviation sector in the European market of carbon dioxide emission rights (European Union Emissions Trading System, EUETS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different oils: babassu, coconut and palm kernel have been transesterified with methanol. The fatty acid methyl esters (FAME) have been subjected to vacuum fractional distillation, and the low boiling point fractions have been blended with fossil kerosene at three different proportions: 5, 10 and 20% vol.