63 resultados para Oscillating wings (Aerodynamics)
em Universidad Politécnica de Madrid
Resumo:
The research work that here is summarized, it is classed on the area of dynamics and measures of railway safety, specifically in the study of the influence of the cross wind on the high-speed trains as well as the study of new mitigation measures like wind breaking structures or wind fences, with optimized shapes. The work has been developed in the Research Center in Rail Technology (CITEF), and supported by the Universidad Politécnica de Madrid, Spain.
Resumo:
The development of a global instability analysis code coupling a time-stepping approach, as applied to the solution of BiGlobal and TriGlobal instability analysis 1, 2 and finite-volume-based spatial discretization, as used in standard aerodynamics codes is presented. The key advantage of the time-stepping method over matrix-formulation approaches is that the former provides a solution to the computer-storage issues associated with the latter methodology. To-date both approaches are successfully in use to analyze instability in complex geometries, although their relative advantages have never been quantified. The ultimate goal of the present work is to address this issue in the context of spatial discretization schemes typically used in industry. The time-stepping approach of Chiba 3 has been implemented in conjunction with two direct numerical simulation algorithms, one based on the typically-used in this context high-order method and another based on low-order methods representative of those in common use in industry. The two codes have been validated with solutions of the BiGlobal EVP and it has been showed that small errors in the base flow do not have affect significantly the results. As a result, a three-dimensional compressible unsteady second-order code for global linear stability has been successfully developed based on finite-volume spatial discretization and time-stepping method with the ability to study complex geometries by means of unstructured and hybrid meshes
Resumo:
This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5ms−1.
Resumo:
Bats are animals that posses high maneuvering capabilities. Their wings contain dozens of articulations that allow the animal to perform aggressive maneuvers by means of controlling the wing shape during flight (morphing-wings). There is no other flying creature in nature with this level of wing dexterity and there is biological evidence that the inertial forces produced by the wings have a key role in the attitude movements of the animal. This can inspire the design of highly articulated morphing-wing micro air vehicles (not necessarily bat-like) with a significant wing-to-body mass ratio. This thesis presents the development of a novel bat-like micro air vehicle (BaTboT) inspired by the morphing-wing mechanism of bats. BaTboT’s morphology is alike in proportion compared to its biological counterpart Cynopterus brachyotis, which provides the biological foundations for developing accurate mathematical models and methods that allow for mimicking bat flight. In nature bats can achieve an amazing level of maneuverability by combining flapping and morphing wingstrokes. Attempting to reproduce the biological wing actuation system that provides that kind of motion using an artificial counterpart requires the analysis of alternative actuation technologies more likely muscle fiber arrays instead of standard servomotor actuators. Thus, NiTinol Shape Memory Alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. This antagonistic configuration of SMA-muscles response to an electrical heating power signal to operate. This heating power is regulated by a proper controller that allows for accurate and fast SMA actuation. Morphing-wings will enable to change wings geometry with the unique purpose of enhancing aerodynamics performance. During the downstroke phase of the wingbeat motion both wings are fully extended aimed at increasing the area surface to properly generate lift forces. Contrary during the upstroke phase of the wingbeat motion both wings are retracted to minimize the area and thus reducing drag forces. Morphing-wings do not only improve on aerodynamics but also on the inertial forces that are key to maneuver. Thus, a modeling framework is introduced for analyzing how BaTboT should maneuver by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Motivated by the biological fact about the influence of wing inertia on the production of body accelerations, an attitude controller is proposed. The attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands. This novel flight control approach is aimed at incrementing net body forces (Fnet) that generate propulsion. Mimicking the way how bats take advantage of inertial and aerodynamical forces produced by the wings in order to both increase lift and maneuver is a promising way to design more efficient flapping/morphing wings MAVs. The novel wing modulation strategy and attitude control methodology proposed in this thesis provide a totally new way of controlling flying robots, that eliminates the need of appendices such as flaps and rudders, and would allow performing more efficient maneuvers, especially useful in confined spaces. As a whole, the BaTboT project consists of five major stages of development: - Study and analysis of biological bat flight data reported in specialized literature aimed at defining design and control criteria. - Formulation of mathematical models for: i) wing kinematics, ii) dynamics, iii) aerodynamics, and iv) SMA muscle-like actuation. It is aimed at modeling the effects of modulating wing inertia into the production of net body forces for maneuvering. - Bio-inspired design and fabrication of: i) skeletal structure of wings and body, ii) SMA muscle-like mechanisms, iii) the wing-membrane, and iv) electronics onboard. It is aimed at developing the bat-like platform (BaTboT) that allows for testing the methods proposed. - The flight controller: i) control of SMA-muscles (morphing-wing modulation) and ii) flight control (attitude regulation). It is aimed at formulating the proper control methods that allow for the proper modulation of BaTboT’s wings. - Experiments: it is aimed at quantifying the effects of properly wing modulation into aerodynamics and inertial production for maneuvering. It is also aimed at demonstrating and validating the hypothesis of improving flight efficiency thanks to the novel control methods presented in this thesis. This thesis introduces the challenges and methods to address these stages. Windtunnel experiments will be oriented to discuss and demonstrate how the wings can considerably affect the dynamics/aerodynamics of flight and how to take advantage of wing inertia modulation that the morphing-wings enable to properly change wings’ geometry during flapping. Resumen: Los murciélagos son mamíferos con una alta capacidad de maniobra. Sus alas están conformadas por docenas de articulaciones que permiten al animal maniobrar gracias al cambio geométrico de las alas durante el vuelo. Esta característica es conocida como (alas mórficas). En la naturaleza, no existe ningún especimen volador con semejante grado de dexteridad de vuelo, y se ha demostrado, que las fuerzas inerciales producidas por el batir de las alas juega un papel fundamental en los movimientos que orientan al animal en vuelo. Estas características pueden inspirar el diseño de un micro vehículo aéreo compuesto por alas mórficas con redundantes grados de libertad, y cuya proporción entre la masa de sus alas y el cuerpo del robot sea significativa. Esta tesis doctoral presenta el desarrollo de un novedoso robot aéreo inspirado en el mecanismo de ala mórfica de los murciélagos. El robot, llamado BaTboT, ha sido diseñado con parámetros morfológicos muy similares a los descritos por su símil biológico Cynopterus brachyotis. El estudio biológico de este especimen ha permitido la definición de criterios de diseño y modelos matemáticos que representan el comportamiento del robot, con el objetivo de imitar lo mejor posible la biomecánica de vuelo de los murciélagos. La biomecánica de vuelo está definida por dos tipos de movimiento de las alas: aleteo y cambio de forma. Intentar imitar como los murciélagos cambian la forma de sus alas con un prototipo artificial, requiere el análisis de métodos alternativos de actuación que se asemejen a la biomecánica de los músculos que actúan las alas, y evitar el uso de sistemas convencionales de actuación como servomotores ó motores DC. En este sentido, las aleaciones con memoria de forma, ó por sus siglas en inglés (SMA), las cuales son fibras de NiTinol que se contraen y expanden ante estímulos térmicos, han sido usados en este proyecto como músculos artificiales que actúan como bíceps y tríceps de las alas, proporcionando la funcionalidad de ala mórfica previamente descrita. De esta manera, los músculos de SMA son mecánicamente posicionados en una configuración antagonista que permite la rotación de las articulaciones del robot. Los actuadores son accionados mediante una señal de potencia la cual es regulada por un sistema de control encargado que los músculos de SMA respondan con la precisión y velocidad deseada. Este sistema de control mórfico de las alas permitirá al robot cambiar la forma de las mismas con el único propósito de mejorar el desempeño aerodinámico. Durante la fase de bajada del aleteo, las alas deben estar extendidas para incrementar la producción de fuerzas de sustentación. Al contrario, durante el ciclo de subida del aleteo, las alas deben contraerse para minimizar el área y reducir las fuerzas de fricción aerodinámica. El control de alas mórficas no solo mejora el desempeño aerodinámico, también impacta la generación de fuerzas inerciales las cuales son esenciales para maniobrar durante el vuelo. Con el objetivo de analizar como el cambio de geometría de las alas influye en la definición de maniobras y su efecto en la producción de fuerzas netas, simulaciones y experimentos han sido llevados a cabo para medir cómo distintos patrones de modulación de las alas influyen en la producción de aceleraciones lineales y angulares. Gracias a estas mediciones, se propone un control de vuelo, ó control de actitud, el cual incorpora información inercial de las alas para la definición de referencias de aceleración angular. El objetivo de esta novedosa estrategia de control radica en el incremento de fuerzas netas para la adecuada generación de movimiento (Fnet). Imitar como los murciélagos ajustan sus alas con el propósito de incrementar las fuerzas de sustentación y mejorar la maniobra en vuelo es definitivamente un tópico de mucho interés para el diseño de robots aéros mas eficientes. La propuesta de control de vuelo definida en este trabajo de investigación podría dar paso a una nueva forma de control de vuelo de robots aéreos que no necesitan del uso de partes mecánicas tales como alerones, etc. Este control también permitiría el desarrollo de vehículos con mayor capacidad de maniobra. El desarrollo de esta investigación se centra en cinco etapas: - Estudiar y analizar el vuelo de los murciélagos con el propósito de definir criterios de diseño y control. - Formular modelos matemáticos que describan la: i) cinemática de las alas, ii) dinámica, iii) aerodinámica, y iv) actuación usando SMA. Estos modelos permiten estimar la influencia de modular las alas en la producción de fuerzas netas. - Diseño y fabricación de BaTboT: i) estructura de las alas y el cuerpo, ii) mecanismo de actuación mórfico basado en SMA, iii) membrana de las alas, y iv) electrónica abordo. - Contro de vuelo compuesto por: i) control de la SMA (modulación de las alas) y ii) regulación de maniobra (actitud). - Experimentos: están enfocados en poder cuantificar cuales son los efectos que ejercen distintos perfiles de modulación del ala en el comportamiento aerodinámico e inercial. El objetivo es demostrar y validar la hipótesis planteada al inicio de esta investigación: mejorar eficiencia de vuelo gracias al novedoso control de orientación (actitud) propuesto en este trabajo. A lo largo del desarrollo de cada una de las cinco etapas, se irán presentando los retos, problemáticas y soluciones a abordar. Los experimentos son realizados utilizando un túnel de viento con la instrumentación necesaria para llevar a cabo las mediciones de desempeño respectivas. En los resultados se discutirá y demostrará que la inercia producida por las alas juega un papel considerable en el comportamiento dinámico y aerodinámico del sistema y como poder tomar ventaja de dicha característica para regular patrones de modulación de las alas que conduzcan a mejorar la eficiencia del robot en futuros vuelos.
Resumo:
The purpose of this investigation was the determination of the aerodynamic performance of sails and gain knowledge of the phenomena involved in order to improve the aerody¬namic characteristics. In this research, the airflow around different sails in four scenarios was studied. The method to analyze these scenarios was the combination of numerical simulations and experimental tests by taking advantage of the best of each tool. Two different Com¬putational Fluid Dynamic codes were utilized: the ANSYS-CFX and the CD-Adapco’s STAR-CCM+. The experimental tests were conducted in the Atmospheric Boundary Layer Wind Tunnel at the Universidad de Granada (Spain), the Twisted Flow Wind Tunnel at the University of Auckland (New Zealand) and the A9 Wind Tunnel at the Universidad Polit´ecnica de Madrid (Spain). Through this research, it was found the three-dimensional effect of the mast on the aerodynamic performance of an IMS Class boat. The pressure distribution on a Transpac 52 Class mainsail was also determined. Moreover, the aerodynamic perfor¬mance of the 43ft and 60ft Dhow Classes was obtained. Finally, a feasibility study was conducted to use a structural wing in combination with conventional propulsions systems. The main conclusion was that this research clarified gaps on the knowledge of the aerodynamic performance of sails. Moreover, since commercial codes were not specifically designed to study sails, a procedure was developed. On the other hand, innovative experimental techniques were used and applied to model-scale sails. The achievements of this thesis are promising and some of the results are already in use by the industry on a daily basis. El propósito de este estudio era determinar el comportamiento aerodinámico de unas velas y mejorar el conocimiento de los fenómenos que suceden para optimizar las características aerodinámicas de dichas velas. En esta investigación se estudió el flujo de aire alrededor de diferentes velas en cuatro escenarios. El método para analizar estos escenarios fue la combinación de simulaciones numéricas y ensayos experimentales mediante el aprovechamiento de las ventajas de cada herramienta. Se utilizaron dos códigos de dinámica de fluidos computacional: el ANSYS-CFX y el STAR-CCM+ de la empresa CD-Adapco. Los ensayos experimentales se desarrollaron en el túnel de viento de capa límite de la Universidad de Granada (España), el túnel de viento de la Universidad de Auckland (Nueva Zelanda) y en el túnel A9 de la Universidad Politécnica de Madrid (España). Mediante esta investigación, se determinó el efecto tridimensional del mástil en un velero de la clase IMS. También se describió la distribución de presiones sobre una mayor de un Transpac 52. Además, se obtuvo el comportamiento aerodinámico de las clases 43ft y 60ft de los veleros Dhows. Finalmente, se llevó a cabo un estudio de viabilidad de la utilización de un ala estructural en combinación con sistemas de propulsión convencionales. La conclusión principal de esta investigación fue la capacidad de explicar ciertas lagunas en el conocimiento del comportamiento aerodinámico de las velas en diferentes escenarios. Además, dado que los códigos comerciales no están específicamente diseñados para el estudio de velas, se desarrolló un procedimiento a tal efecto. Por otro lado, se han utilizado innovadoras técnicas experimentales y se han aplicado a modelos de velas a escala. Los logros de esta investigación son prometedores y algunos de los resultados obtenidos ya están siendo utilizados por la industria en su día a día.
Resumo:
The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.
Resumo:
A pressure wave is generated when a high speed train enters a tunnel. This wave travels along the tunnel back and forth, and is reflected at the irregularities of the tunnel duct (section changes, chimneys and tunnel ends). The pressure changes are associated to these waves can have an effect on passengers if the trains are not suitably sealed or pressurized. The intensity of the waves depends mainly on the train speed, and on the blockage ratio (train-section-to- tunnel-section area ratio). As the intensity of the waves is limited by regulations, and also by the effects on passengers and infrastructures, the sizing of the tunnel section area is largely influenced by the maximum train speed allowed in the tunnel. The aim of this study is to analyse the increase in cost in a tunnel due to the existence of this difference in ground level, and evaluate the increase of construction costs that this elevation might involve.
Resumo:
The range for airframe configurations available for UAS is as diverse as those used for manned aircraft and more since the commercial risk in trying unorthodox solutions is less for the UAS manufacturer. This is principally because the UAS airframes are usually much smaller than the manned aircraft and operators are less likely to have a bias against unconventional configurations. One of these unconventional configurations is the box-wing, which is an unconventional solution for the design of the new UAS generation. The existence of two wings separated in different planes that are, however, significantly close together, means that the aerodynamic analysis by theoretical or computational methods is a difficult task, due to the considerable interference existing. Considering the fact that the flight of most UAS takes place at low Reynolds numbers, it is necessary to study the aerodynamics of the box wing configuration by testing different models in a wind tunnel to be able to obtain reasonable results. In the present work, the study is enhanced by varying not only the sweepback angles of the two wings, but also their position along the models’ fuselage. Certain models have shown being more efficient than others, pointing out that certain relative positions of wing exists that can improve the aerodynamics efficiency of the box wing configuration.
Resumo:
We describe a corpus of provenance traces that we have collected by executing 120 real world scientific workflows. The workflows are from two different workflow systems: Taverna [5] and Wings [3], and 12 different application domains (see Figure 1). Table 1 provides a summary of this PROV-corpus.
Resumo:
In the present study the geometry of cups is experimentally studied through anemometer performance. This performance is analyzed in two different ways. On the one hand the anemometer transfer function between cases is compared. On the other hand the stationary rotation speed is decomposed into constant and harmonic terms, the comparison being established between the last ones. Results indicate that some cup shapes can improve the uniformity of anemometer rotation, this fact being important to reduce degradation due to ageing.
Resumo:
En esta tesis se ha analizado la influencia que tienen ciertas imperfecciones en el borde de ataque de un perfil aerodinámico sobre el comportamiento aerodinámico general del mismo, centrándose fundamentalmente en la influencia sobre el coeficiente de sustentación máxima, coeficiente de resistencia y sobre la eficiencia aerodinámica del perfil, es decir sobre la relación entre la sustentación y la resistencia aerodinámicas. También se ha analizado su influencia en otros aspectos, como la entrada en pérdida, ángulo de ataque de sustentación máxima, ángulo de ataque de eficiencia máxima, coeficiente de momento aerodinámico y posición del centro aerodinámico. Estos defectos de forma en el borde de ataque pueden aparecer en algunos procesos de fabricación de determinados elementos aerodinámicos, como pueden ser las alas de pequeños aviones no tripulados o las palas de aeroturbina. Los perfiles se ha estudiado a bajos números de Reynolds debido a su uso reciente en una amplia gama de aplicaciones, desde vehículos aéreos no tripulados (UAV) hasta palas de aeroturbina de baja potencia, e incluso debido a su potencial utilización en aeronaves diseñadas para volar en atmósferas de baja densidad. El objeto de estudio de esta tesis no ha sido analizado en profundidad en la literatura científica, aunque sí que se ha estudiado por varios autores el comportamiento de perfiles a bajos números de Reynolds, con ciertas protuberancias sobre su superficie o también con formación de hielo en el borde de ataque. Para la realización de este estudio se han analizado perfiles de distinto tipo, perfiles simétricos y con curvatura, perfiles laminares, y todos ellos con igual o distinto espesor, con el objeto de obtener y comparar la influencia del fenómeno estudiado sobre cada tipo de perfil y así analizar su grado de sensibilidad a estas imperfecciones en la geometría del borde de ataque. Este trabajo ha sido realizado experimentalmente utilizando una túnel aerodinámico diseñado específicamente a tal efecto, así como una balanza electrónica para medir las fuerzas y los momentos sobre el perfil, y un escáner de presiones para medir la distribución de presiones sobre la superficie de los perfiles en determinados casos de interés. La finalidad de este estudio está orientada al establecimiento de criterios para cuantificar la influencia en la aerodinámica del perfil que tiene el hecho de que el borde de ataque presente una discontinuidad geométrica, con el objeto de poder establecer los límites de aceptación o rechazo de estas piezas en el momento de ser fabricadas. Del análisis de los casos estudiados se puede concluir que según aumenta el tamaño de la imperfección del borde de ataque, la sustentación aerodinámica máxima en general disminuye, al igual que la eficiencia aerodinámica máxima, pues la resistencia aerodinámica aumenta. Sin embargo, en algunos casos, para pequeños defectos se produce un efecto contrario. La sustentación máxima aumenta apreciablemente sin apenas pérdida de eficiencia aerodinámica máxima. ABSTRACT The aim of this thesis is to analyze the effects of leading edge imperfections on the aerodynamic characteristics of airfoils at low Reynolds numbers. The leading edge imperfection here considered being a slight displacement of half airfoil with respect to the other. This study has focus on its influence on the airfoil’s aerodynamic lift, drag and on the aerodynamic efficiency of the airfoil, that is, the relationship between the aerodynamic lift and drag. It has also been studied how this fact may alter some other aerodynamic aspects of airfoils, such as stall, angle of attack of maximum lift, angle of maximum efficiency, aerodynamic moment coefficient and aerodynamic center position. These imperfections in the leading edge may appear in some manufacturing processes of certain aerodynamic elements, such as unmanned aircraft wings or wind turbine blades. The study has focused on the analysis of the behavior at low Reynolds numbers due to recent use of low Reynolds numbers airfoils in a wide range of applications, from unmanned aerial vehicles (UAV) to low power wind turbine blades, or even due to their potential use in aircraft designed to fly in low density atmospheres as the one existing in Mars. This phenomenon has not been deeply analyzed in the literature, although several authors have discussed on airfoils at low Reynolds number, with leading edge protuberances or airfoils with ice accretions. Various types of airfoils have been analyzed, laminar and non-laminar, symmetric and curved airfoils, and airfoils with different thickness, in order to compare the degree of influence of the phenomenon studied on each airfoil type and thus, to estimate the degree of sensitivity to the anomaly geometry. The study was carried out experimentally using a test chamber designed specifically for this purpose, as well as an electronic balance to measure the forces and moments on the airfoil, and a pressure scanner to measure distribution of pressures in certain cases. The main purpose of this research is to establish a criteria for quantifying the influence that a slight displacement of half aerofoil with respect to the other has in the degradation of aerodynamics characteristics, aiming at establishing the acceptance limits for these pieces when they are manufactured, according to the type of airfoil used. Based on the results obtained from the analysis of the cases under study it can be concluded that displacements, within the range of study, decreases maximum aerodynamic lift, but the aerodynamic drag increases, and consequently there is a reduction of aerodynamic efficiency. However, in some cases, for small defects opposite effect occurs. The maximum lift increases significantly with little loss of maximum aerodynamic efficiency.
Resumo:
Performance of heave plates used in offshore structures is strongly influenced by their added mass and damping, which are affected by proximity to a boundary. A previous paper by the authors presented numerical simulations of the flow around a circular solid disk oscillating at varying elevations from seabed [1]. The force calculated was used to evaluate the added mass and damping coefficients for the disk. The simulations suggest that as the structure moves closer to the seabed the added mass and damping coefficients (Ca and Cb) increases continuously. In order to understand the physics behind the added mass and damping trends, when a heave plate is moving near a seabed or closer to the free surface, the flow characteristics around the heave plate are examined numerically in this paper. Flow around oscillating disks is dominated by generation and development of phase-dependent vortical structures, characterized by the KC number and the distance from the seabed or free surface to the heave plate. Numerical calculations presented in this paper have comprised the qualitative analysis of the vortex shedding and the investigation of the links between such vortex shedding and, on one hand the damping coefficient, and on the other hand, pairing mechanisms such as the shedding angle.
Resumo:
La energía eólica marina es uno de los recursos energéticos con mayor proyección pudiendo contribuir a reducir el consumo de combustibles fósiles y a cubrir la demanda de energía en todo el mundo. El concepto de aerogenerador marino está basado en estructuras fijas como jackets o en plataformas flotantes, ya sea una semisumergible o una TLP. Se espera que la energía eólica offshore juegue un papel importante en el perfil de producción energética de los próximos años; por tanto, las turbinas eólicas deben hacerse más fables y rentables para ser competitivas frente a otras fuentes de energía. Las estructuras flotantes pueden experimentar movimientos resonantes en estados de la mar con largos períodos de oleaje. Estos movimientos disminuyen su operatividad y pueden causar daños en los componentes eléctricos de las turbinas y en las palas, también en los risers y moorings. La respuesta de la componente vertical del movimiento puede reducirse mediante diferentes actuaciones: (1) aumentando la amortiguación del sistema, (2) manteniendo el período del movimiento vertical fuera del rango de la energía de la ola, y (3) reduciendo las fuerzas de excitación verticales. Un ejemplo típico para llevar a cabo esta reducción son las "Heave Plates". Las heave plates son placas que se utilizan en la industria offshore debido a sus características hidrodinámicas, ya que aumentan la masa añadida y la amortiguación del sistema. En un análisis hidrodinámico convencional, se considera una estructura sometida a un oleaje con determinadas características y se evalúan las cargas lineales usando la teoría potencial. El amortiguamiento viscoso, que juega un papel crucial en la respuesta en resonancia del sistema, es un dato de entrada para el análisis. La tesis se centra principalmente en la predicción del amortiguamiento viscoso y de la masa añadida de las heave plates usadas en las turbinas eólicas flotantes. En los cálculos, las fuerzas hidrodinámicas se han obtenido con el f n de estudiar cómo los coeficientes hidrodinámicos de masa añadida5 y amortiguamiento varían con el número de KC, que caracteriza la amplitud del movimiento respecto al diámetro del disco. Por otra parte, se ha investigado la influencia de la distancia media de la ‘heave plate’ a la superficie libre o al fondo del mar, sobre los coeficientes hidrodinámicos. En este proceso, un nuevo modelo que describe el trabajo realizado por la amortiguación en función de la enstrofía, es descrito en el presente documento. Este nuevo enfoque es capaz de proporcionar una correlación directa entre el desprendimiento local de vorticidad y la fuerza de amortiguación global. El análisis también incluye el estudio de los efectos de la geometría de la heave plate, y examina la sensibilidad de los coeficientes hidrodinámicos al incluir porosidad en ésta. Un diseño novedoso de una heave plate, basado en la teoría fractal, también fue analizado experimentalmente y comparado con datos experimentales obtenidos por otros autores. Para la resolución de las ecuaciones de Navier Stokes se ha usado un solver basado en el método de volúmenes finitos. El solver usa las librerías de OpenFOAM (Open source Field Operation And Manipulation), para resolver un problema multifásico e incompresible, usando la técnica VOF (volume of fluid) que permite capturar el movimiento de la superficie libre. Los resultados numéricos han sido comparados con resultados experimentales llevados a cabo en el Canal del Ensayos Hidrodinámicos (CEHINAV) de la Universidad Politécnica de Madrid y en el Canal de Experiencias Hidrodinámicas (CEHIPAR) en Madrid, al igual que con otros experimentos realizados en la Escuela de Ingeniería Mecánica de la Universidad de Western Australia. Los principales resultados se presentan a continuación: 1. Para pequeños valores de KC, los coeficientes hidrodinámicos de masa añadida y amortiguamiento incrementan su valor a medida que el disco se aproxima al fondo marino. Para los casos cuando el disco oscila cerca de la superficie libre, la dependencia de los coeficientes hidrodinámicos es más fuerte por la influencia del movimiento de la superficie libre. 2. Los casos analizados muestran la existencia de un valor crítico de KC, donde la tendencia de los coeficientes hidrodinámicos se ve alterada. Dicho valor crítico depende de la distancia al fondo marino o a la superficie libre. 3. El comportamiento físico del flujo, para valores de KC cercanos a su valor crítico ha sido estudiado mediante el análisis del campo de vorticidad. 4. Introducir porosidad al disco, reduce la masa añadida para los valores de KC estudiados, pero se ha encontrado que la porosidad incrementa el valor del coeficiente de amortiguamiento cuando se incrementa la amplitud del movimiento, logrando un máximo de damping para un disco con 10% de porosidad. 5. Los resultados numéricos y experimentales para los discos con faldón, muestran que usar este tipo de geometrías incrementa la masa añadida cuando se compara con el disco sólido, pero reduce considerablemente el coeficiente de amortiguamiento. 6. Un diseño novedoso de heave plate basado en la teoría fractal ha sido experimentalmente estudiado a diferentes calados y comparado con datos experimentales obtenidos por otro autores. Los resultados muestran un comportamiento incierto de los coeficientes y por tanto este diseño debería ser estudiado más a fondo. ABSTRACT Offshore wind energy is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. Offshore wind turbine concepts are based on either a fixed structure as a jacket or a floating offshore platform like a semisubmersible, spar or tension leg platform. Floating offshore wind turbines have the potential to be an important part of the energy production profile in the coming years. In order to accomplish this wind integration, these wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. Floating offshore artifacts, such oil rings and wind turbines, may experience resonant heave motions in sea states with long peak periods. These heave resonances may increase the system downtime and cause damage on the system components and as well as on risers and mooring systems. The heave resonant response may be reduced by different means: (1) increasing the damping of the system, (2) keeping the natural heave period outside the range of the wave energy, and (3) reducing the heave excitation forces. A typical example to accomplish this reduction are “Heave Plates”. Heave plates are used in the offshore industry due to their hydrodynamic characteristics, i.e., increased added mass and damping. Conventional offshore hydrodynamic analysis considers a structure in waves, and evaluates the linear and nonlinear loads using potential theory. Viscous damping, which is expected to play a crucial role in the resonant response, is an empirical input to the analysis, and is not explicitly calculated. The present research has been mainly focused on the prediction of viscous damping and added mass of floating offshore wind turbine heave plates. In the calculations, the hydrodynamic forces have been measured in order to compute how the hydrodynamic coefficients of added mass1 and damping vary with the KC number, which characterises the amplitude of heave motion relative to the diameter of the disc. In addition, the influence on the hydrodynamic coefficients when the heave plate is oscillating close to the free surface or the seabed has been investigated. In this process, a new model describing the work done by damping in terms of the flow enstrophy, is described herein. This new approach is able to provide a direct correlation between the local vortex shedding processes and the global damping force. The analysis also includes the study of different edges geometry, and examines the sensitivity of the damping and added mass coefficients to the porosity of the plate. A novel porous heave plate based on fractal theory has also been proposed, tested experimentally and compared with experimental data obtained by other authors for plates with similar porosity. A numerical solver of Navier Stokes equations, based on the finite volume technique has been applied. It uses the open-source libraries of OpenFOAM (Open source Field Operation And Manipulation), to solve 2 incompressible, isothermal immiscible fluids using a VOF (volume of fluid) phase-fraction based interface capturing approach, with optional mesh motion and mesh topology changes including adaptive re-meshing. Numerical results have been compared with experiments conducted at Technical University of Madrid (CEHINAV) and CEHIPAR model basins in Madrid and with others performed at School of Mechanical Engineering in The University of Western Australia. A brief summary of main results are presented below: 1. At low KC numbers, a systematic increase in added mass and damping, corresponding to an increase in the seabed proximity, is observed. Specifically, for the cases when the heave plate is oscillating closer to the free surface, the dependence of the hydrodynamic coefficients is strongly influenced by the free surface. 2. As seen in experiments, a critical KC, where the linear trend of the hydrodynamic coefficients with KC is disrupted and that depends on the seabed or free surface distance, has been found. 3. The physical behavior of the flow around the critical KC has been explained through an analysis of the flow vorticity field. 4. The porosity of the heave plates reduces the added mass for the studied porosity at all KC numbers, but the porous heave plates are found to increase the damping coefficient with increasing amplitude of oscillation, achieving a maximum damping coefficient for the heave plate with 10% porosity in the entire KC range. 5. Another concept taken into account in this work has been the heave plates with flaps. Numerical and experimental results show that using discs with flaps will increase added mass when compared to the plain plate but may also significantly reduce damping. 6. A novel heave plate design based on fractal theory has tested experimentally for different submergences and compared with experimental data obtained by other authors for porous plates. Results show an unclear behavior in the coefficients and should be studied further. Future work is necessary in order to address a series of open questions focusing on 3D effects, optimization of the heave plates shapes, etc.
Resumo:
The generation of identical droplets of controllable size in the micrometer range is a problem of much interest owing to the numerous technological applications of such droplets. This work reports an investigation of the regime of periodic emission of droplets from an electrified oscillating meniscus of a liquid of low viscosity and high electrical conductivity attached to the end of a capillary tube, which may be used to produce droplets more than ten times smaller than the diameter of the tube. To attain this periodic microdripping regime, termed axial spray mode II by Juraschek and Röllgen [R. Juraschek and F. W. Röllgen, Int. J. Mass Spectrom. 177, 1 (1998)], liquid is continuously supplied through the tube at a given constant flow rate, while a dc voltage is applied between the tube and a nearby counter electrode. The resulting electric field induces a stress at the surface of the liquid that stretches the meniscus until, in certain ranges of voltage and flow rate, it develops a ligament that eventually detaches, forming a single droplet, in a process that repeats itself periodically. While it is being stretched, the ligament develops a conical tip that emits ultrafine droplets, but the total mass emitted is practically contained in the main droplet. In the parametrical domain studied, we find that the process depends on two main dimensionless parameters, the flow rate nondimensionalized with the diameter of the tube and the capillary time, q, and the electric Bond number BE, which is a nondimensional measure of the square of the applied voltage. The meniscus oscillation frequency made nondimensional with the capillary time, f, is of order unity for very small flow rates and tends to decrease as the inverse of the square root of q for larger values of this parameter. The product of the meniscus mean volume times the oscillation frequency is nearly constant. The characteristic length and width of the liquid ligament immediately before its detachment approximately scale as powers of the flow rate and depend only weakly on the applied voltage. The diameter of the main droplets nondimensionalized with the diameter of the tube satisfies dd≈(6/π)1/3(q/f)1/3, from mass conservation, while the electric charge of these droplets is about 1/4 of the Rayleigh charge. At the minimum flow rate compatible with the periodic regimen, the dimensionless diameter of the droplets is smaller than one-tenth, which presents a way to use electrohydrodynamic atomization to generate droplets of highly conducting liquids in the micron-size range, in marked contrast with the cone-jet electrospray whose typical droplet size is in the nanometric regime for these liquids. In contrast with other microdripping regimes where the mass is emitted upon the periodic formation of a narrow capillary jet, the present regime gives one single droplet per oscillation, except for the almost massless fine aerosol emitted in the form of an electrospray.
Resumo:
A new method is presented to generate reduced order models (ROMs) in Fluid Dynamics problems of industrial interest. The method is based on the expansion of the flow variables in a Proper Orthogonal Decomposition (POD) basis, calculated from a limited number of snapshots, which are obtained via Computational Fluid Dynamics (CFD). Then, the POD-mode amplitudes are calculated as minimizers of a properly defined overall residual of the equations and boundary conditions. The method includes various ingredients that are new in this field. The residual can be calculated using only a limited number of points in the flow field, which can be scattered either all over the whole computational domain or over a smaller projection window. The resulting ROM is both computationally efficient(reconstructed flow fields require, in cases that do not present shock waves, less than 1 % of the time needed to compute a full CFD solution) and flexible(the projection window can avoid regions of large localized CFD errors).Also, for problems related with aerodynamics, POD modes are obtained from a set of snapshots calculated by a CFD method based on the compressible Navier Stokes equations and a turbulence model (which further more includes some unphysical stabilizing terms that are included for purely numerical reasons), but projection onto the POD manifold is made using the inviscid Euler equations, which makes the method independent of the CFD scheme. In addition, shock waves are treated specifically in the POD description, to avoid the need of using a too large number of snapshots. Various definitions of the residual are also discussed, along with the number and distribution of snapshots, the number of retained modes, and the effect of CFD errors. The method is checked and discussed on several test problems that describe (i) heat transfer in the recirculation region downstream of a backwards facing step, (ii) the flow past a two-dimensional airfoil in both the subsonic and transonic regimes, and (iii) the flow past a three-dimensional horizontal tail plane. The method is both efficient and numerically robust in the sense that the computational effort is quite small compared to CFD and results are both reasonably accurate and largely insensitive to the definition of the residual, to CFD errors, and to the CFD method itself, which may contain artificial stabilizing terms. Thus, the method is amenable for practical engineering applications. Resumen Se presenta un nuevo método para generar modelos de orden reducido (ROMs) aplicado a problemas fluidodinámicos de interés industrial. El nuevo método se basa en la expansión de las variables fluidas en una base POD, calculada a partir de un cierto número de snapshots, los cuales se han obtenido gracias a simulaciones numéricas (CFD). A continuación, las amplitudes de los modos POD se calculan minimizando un residual global adecuadamente definido que combina las ecuaciones y las condiciones de contorno. El método incluye varios ingredientes que son nuevos en este campo de estudio. El residual puede calcularse utilizando únicamente un número limitado de puntos del campo fluido. Estos puntos puede encontrarse dispersos a lo largo del dominio computacional completo o sobre una ventana de proyección. El modelo ROM obtenido es tanto computacionalmente eficiente (en aquellos casos que no presentan ondas de choque reconstruir los campos fluidos requiere menos del 1% del tiempo necesario para calcular una solución CFD) como flexible (la ventana de proyección puede escogerse de forma que evite contener regiones con errores en la solución CFD localizados y grandes). Además, en problemas aerodinámicos, los modos POD se obtienen de un conjunto de snapshots calculados utilizando un código CFD basado en la versión compresible de las ecuaciones de Navier Stokes y un modelo de turbulencia (el cual puede incluir algunos términos estabilizadores sin sentido físico que se añaden por razones puramente numéricas), aunque la proyección en la variedad POD se hace utilizando las ecuaciones de Euler, lo que hace al método independiente del esquema utilizado en el código CFD. Además, las ondas de choque se tratan específicamente en la descripción POD para evitar la necesidad de utilizar un número demasiado grande de snapshots. Varias definiciones del residual se discuten, así como el número y distribución de los snapshots,el número de modos retenidos y el efecto de los errores debidos al CFD. El método se comprueba y discute para varios problemas de evaluación que describen (i) la transferencia de calor en la región de recirculación aguas abajo de un escalón, (ii) el flujo alrededor de un perfil bidimensional en regímenes subsónico y transónico y (iii) el flujo alrededor de un estabilizador horizontal tridimensional. El método es tanto eficiente como numéricamente robusto en el sentido de que el esfuerzo computacional es muy pequeño comparado con el requerido por el CFD y los resultados son razonablemente precisos y muy insensibles a la definición del residual, los errores debidos al CFD y al método CFD en sí mismo, el cual puede contener términos estabilizadores artificiales. Por lo tanto, el método puede utilizarse en aplicaciones prácticas de ingeniería.