15 resultados para Orientation tensor
em Universidad Politécnica de Madrid
Resumo:
The aim of this study was to evaluate the effects of row orien¬tation on vine and soil water status in an irrigated vineyard. The trial was developed during 2006, 2007 and 2008, in the South East region of Madrid (Spain) on 5-year old Cabernet franc grapevines (Vitis vinifera L.) grafted onto 140Ru. Plant spacing was 2.5 m x 1.5 m and vines were trained to a VSP. Four orientations were stu¬died: North-South (N-S), East-West (E-W), Northeast-Southwest (N+45) and North-South +20o (N+20). Irrigation (0.4•ET0) started when shoot growth stopped. Soil water availability was measured using a TDR technique with forty buried probes. Row orientation did not have any effect on water consumption in the vineyard. At maturity, leaf water potential was measured at predawn, early mor¬ning, midday and 14:00 solar time, on both canopy sides - sun and shade – ; the early morning measurement was the one that better differentiated treatments. Leaf water potential was a good indica¬tor of plant water status. Differences between (N-S and E-W) and (N+20 and N+45) treatments were obtained both on sun and shade canopy sides, N+20 and N+45 having lower leaf water potentials then drier leaves. The water stress integral shows that N-S and E-W reach the end of maturation with a greater level of hydration than N+45 and N+20. As a whole, N+45 and N+20 orientations, without affecting too much the soil available water content, induce regularly more water stress to the vine at some periods, probably due to an higher sunlight interception in early morning which makes water limitation for the vine more early and thus more severe during the day.
Resumo:
Heart valve prostheses are used to replace native heart valves which that are damaged because of congenital diseases or due to ageing. Biological prostheses made of bovine pericardium are similar to native valves and do not require any anticoagulation treatment, but are less durable than mechanical prostheses and usually fail by tearing. Researches are oriented in improving the resistance and durability of biological heart valve prostheses in order to increase their life expectancy. To understand the mechanical behaviour of bovine pericardium and relate it to its microstructure (mainly collagen fibres concentration and orientation) uniaxial tensile tests have been performed on a model material made of collagen fibres. Small Angle Light Scattering (SALS) has been also used to characterize the microstructure without damaging the material. Results with the model material allowed us to obtain the orientation of the fibres, relating the microstructure to mechanical performance
Resumo:
Attentional control and Information processing speed are central concepts in cognitive psychology and neuropsychology. Functional neuroimaging and neuropsychological assessment have depicted theoretical models considering attention as a complex and non-unitary process. One of its component processes, Attentional set-shifting ability, is commonly assessed using the Trail Making Test (TMT). Performance in the TMT decreases with increasing age in adults, Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Besides, speed of information processing (SIP) seems to modulate attentional performance. While neural correlates of attentional control have been widely studied, there are few evidences about the neural substrates of SIP in these groups of patients. Different authors have suggested that it could be a property of cerebral white matter, thus, deterioration of the white matter tracts that connect brain regions related to set-shifting may underlie the age-related, MCI and AD decrease in performance. The aim of this study was to study the anatomical dissociation of attentional and speed mechanisms. Diffusion tensor imaging (DTI) provides a unique insight into the cellular integrity of the brain, offering an in vivo view into the microarchitecture of cerebral white matter. At the same time, the study of ageing, characterized by white matter decline, provides the opportunity to study the anatomical substrates speeded or slowed information processing. We hypothesized that FA values would be inversely correlated with time to completion on Parts A and B of the TMT, but not the derived scores B/A and B-A.
Resumo:
The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hypothesis was never tested in vivo. Thus, the correlation between the microstructure of the anatomic connectivity and the functional complexity of the brain needs to be inspected. In this study we analyzed the correlation between LZC and fractional anisotropy (FA), a scalar quantity derived from diffusion tensors that is particularly useful as an estimate of the functional integrity of myelinated axonal fibers, in a group of sixteen healthy adults (all female, mean age 65.56 ± 6.06 years, intervals 58–82). Our results showed a positive correlation between FA and LZC scores in regions including clusters in the splenium of the corpus callosum, cingulum, parahipocampal regions and the sagittal stratum. This study supports the notion of a positive correlation between the functional complexity of the brain and the microstructure of its anatomical connectivity. Our investigation proved that a combination of neuroanatomical and neurophysiological techniques may shed some light on the underlying physiological determinants of brain's oscillations
Resumo:
Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.
Resumo:
In this article, a method for the agreement of a set of robots on a common reference orientation based on a distributed consensus algorithm is described. It only needs that robots detect the relative positions of their neighbors and communicate with them. Two different consensus algorithms based on the exchange of information are proposed, tested and analyzed. Systematic experiments were carried out in simulation and with real robots in order to test the method. Experimental results show that the robots are able to agree on the reference orientation under certain conditions. Scalability with an increasing number of robots was tested successfully in simulation with up to 49 robots. Experiments with real robots succeeded proving that the proposed method works in reality.
Resumo:
We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As4 during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100): As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100): As surfaces.
Resumo:
In this article, a method for the agreement of a set of robots on a common reference orientation based on a distributed consensus algorithm is described. It only needs that robots detect the relative positions of their neighbors and communicate with them. Two different consensus algorithms based on the exchange of information are proposed, tested and analyzed. Systematic experiments were carried out in simulation and with real robots in order to test the method. Experimental results show that the robots are able to agree on the reference orientation under certain conditions. Scalability with an increasing number of robots was tested successfully in simulation with up to 49 robots. Experiments with real robots succeeded proving that the proposed method works in reality.
Resumo:
This paper presents the development of a new parallel robot designed for helping with bone milling surgeries. The robot is a small modular wrist with 2 active degrees of freedom, and it is proposed to be used as an orientation device located at the end of a robotic arm designed for bone milling processes. A generic kinematic geometry is proposed for this device. This first article shows the developments on the workspace optimization and the analysis of the force field required to complete a reconstruction of the inferior jawbone. The singularities of the mechanism are analyzed, and the actuator selection is justified with the torque requirements and the study of the force space. The results obtained by the simulations allow building a first prototype using linear motors. Bone milling experiment video is shown as additional material.
Resumo:
A relevant issue concerning optoelectronic devices based on III-nitrides is the presence of strong polarization fields that may reduce efficiency.
Resumo:
Realistic operation of helicopter flight simulators in complex topographies (such as urban environments) requires appropriate prediction of the incoming wind, and this prediction should be made in real time. Unfortunately, the wind topology around complex topographies shows time-dependent, fully nonlinear, turbulent patterns (i.e., wakes) whose simulation cannot be made using computationally inexpensive tools based on corrected potential approximations. Instead, the full Navier-Stokes plus some kind of turbulent modeling is necessary, which is quite computationally expensive. The complete unsteady flow depends on two parameters, namely the velocity and orientation of the free stream flow. The aim of this MSc thesis is to develop a methodology for the real time simulation of these complex flows. For simplicity, the flow around a single building (20 mx20 m cross section and 100 m height) is considered, with free stream velocity in the range 5-25 m/s. Because of the square cross section, the problem shows two reflection symmetries, which allows for restricting the orientations to the range 0° < a. < 45°. The methodology includes an offline preprocess and the online operation. The preprocess consists in three steps: An appropriate, unstructured mesh is selected in which the flow is sim¬ulated using OpenFOAM, and this is done for 33 combinations of 3 free stream intensities and 11 orientations. For each of these, the simulation proceeds for a sufficiently large time as to eliminate transients. This step is quite computationally expensive. Each flow field is post-processed using a combination of proper orthogonal decomposition, fast Fourier transform, and a convenient optimization tool, which identifies the relevant frequencies (namely, both the basic frequencies and their harmonics) and modes in the computational mesh. This combination includes several new ingredients to filter errors out and identify the relevant spatio-temporal patterns. Note that, in principle, the basic frequencies depend on both the intensity and the orientation of the free stream flow. The outcome of this step is a set of modes (vectors containing the three velocity components at all mesh points) for the various Fourier components, intensities, and orientations, which can be organized as a third order tensor. This step is fairly computationally inexpensive. The above mentioned tensor is treated using a combination of truncated high order singular value, decomposition and appropriate one-dimensional interpolation (as in Lorente, Velazquez, Vega, J. Aircraft, 45 (2008) 1779-1788). The outcome is a tensor representation of both the relevant fre¬quencies and the associated Fourier modes for a given pair of values of the free stream flow intensity and orientation. This step is fairly compu¬tationally inexpensive. The online, operation requires just reconstructing the time-dependent flow field from its Fourier representation, which is extremely computationally inex¬pensive. The whole method is quite robust.
Resumo:
The pressuremeter test in boreholes has proven itself as a useful tool in geotechnical explorations, especially comparing its results with those obtained from a mathematical model ruled by a soil representative constitutive equation. The numerical model shown in this paper is aimed to be the reference framework for the interpretation of this test. The model analyses variables such as: the type of response, the initial state, the drainage regime and the constitutive equations. It is a model of finite elements able to work with a mesh without deformation or one adapted to it.
Resumo:
Piezoelectric AlN layer grain orientation, grown by room temperature reactive sputtering, is analyzed by transmission electron microscopy (TEM).Two types of samples are studied: (i) AlN grown on well-polished NCD (nano-crystalline diamond) diamond, (ii) AlN grown on an up-side down NCD layer previously grown on a Si substrate, i.e. diamond surface as smooth as that of Si substrates. The second set of sample show a faster lignment of their AlN grain caxis attributed to it smoother diamond free surface. No grain orientation relationship between diamond substrate grain and the AlN ones is evidenced, which seems to indicate the preponderance role of the surface substrate state.
Resumo:
Mosaicing is a technique that allows obtaining a large high resolution image by stitching several images together. These base images are usually acquired from an elevated point of view. Until recently, low-altitude image acquisition has been performed typically by using using airplanes, as well as other manned platforms. However, mini unmanned aerial vehicles (MUAV) endowed with a camera have lately made this task more available for small for cicil applications, for example for small farmers in order to obtain accurate agronomic information about their crop fields. The stitching orientation, or the image acquisition orientation usually coincides with the aircraft heading assuming a downwards orientation of the camera. In this paper, the efect of the image orientation in the eficiency of the aerial coverage path planning is studied. Moreover, an algorithm to compute an optimal stitching orientation angle is proposed and results are numerically compared with classical approaches.