11 resultados para Nonparametric Bayes
em Universidad Politécnica de Madrid
Resumo:
The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.
Resumo:
The naïve Bayes approach is a simple but often satisfactory method for supervised classification. In this paper, we focus on the naïve Bayes model and propose the application of regularization techniques to learn a naïve Bayes classifier. The main contribution of the paper is a stagewise version of the selective naïve Bayes, which can be considered a regularized version of the naïve Bayes model. We call it forward stagewise naïve Bayes. For comparison’s sake, we also introduce an explicitly regularized formulation of the naïve Bayes model, where conditional independence (absence of arcs) is promoted via an L 1/L 2-group penalty on the parameters that define the conditional probability distributions. Although already published in the literature, this idea has only been applied for continuous predictors. We extend this formulation to discrete predictors and propose a modification that yields an adaptive penalization. We show that, whereas the L 1/L 2 group penalty formulation only discards irrelevant predictors, the forward stagewise naïve Bayes can discard both irrelevant and redundant predictors, which are known to be harmful for the naïve Bayes classifier. Both approaches, however, usually improve the classical naïve Bayes model’s accuracy.
Resumo:
Nonparametric belief propagation (NBP) is a well-known particle-based method for distributed inference in wireless networks. NBP has a large number of applications, including cooperative localization. However, in loopy networks NBP suffers from similar problems as standard BP, such as over-confident beliefs and possible nonconvergence. Tree-reweighted NBP (TRW-NBP) can mitigate these problems, but does not easily lead to a distributed implementation due to the non-local nature of the required so-called edge appearance probabilities. In this paper, we propose a variation of TRWNBP, suitable for cooperative localization in wireless networks. Our algorithm uses a fixed edge appearance probability for every edge, and can outperform standard NBP in dense wireless networks.
Resumo:
A number of methods for cooperative localization has been proposed, but most of them provide only location estimate, without associated uncertainty. On the other hand, nonparametric belief propagation (NBP), which provides approximated posterior distributions of the location estimates, is expensive mostly because of the transmission of the particles. In this paper, we propose a novel approach to reduce communication overhead for cooperative positioning using NBP. It is based on: i) communication of the beliefs (instead of the messages), ii) approximation of the belief with Gaussian mixture of very few components, and iii) censoring. According to our simulations results, these modifications reduce significantly communication overhead while providing the estimates almost as accurate as the transmission of the particles.
Resumo:
In this paper, the authors provide a methodology to design nonparametric permutation tests and, in particular, nonparametric rank tests for applications in detection. In the first part of the paper, the authors develop the optimization theory of both permutation and rank tests in the Neyman?Pearson sense; in the second part of the paper, they carry out a comparative performance analysis of the permutation and rank tests (detectors) against the parametric ones in radar applications. First, a brief review of some contributions on nonparametric tests is realized. Then, the optimum permutation and rank tests are derived. Finally, a performance analysis is realized by Monte-Carlo simulations for the corresponding detectors, and the results are shown in curves of detection probability versus signal-to-noise ratio
Resumo:
Machine and Statistical Learning techniques are used in almost all online advertisement systems. The problem of discovering which content is more demanded (e.g. receive more clicks) can be modeled as a multi-armed bandit problem. Contextual bandits (i.e., bandits with covariates, side information or associative reinforcement learning) associate, to each specific content, several features that define the “context” in which it appears (e.g. user, web page, time, region). This problem can be studied in the stochastic/statistical setting by means of the conditional probability paradigm using the Bayes’ theorem. However, for very large contextual information and/or real-time constraints, the exact calculation of the Bayes’ rule is computationally infeasible. In this article, we present a method that is able to handle large contextual information for learning in contextual-bandits problems. This method was tested in the Challenge on Yahoo! dataset at ICML2012’s Workshop “new Challenges for Exploration & Exploitation 3”, obtaining the second place. Its basic exploration policy is deterministic in the sense that for the same input data (as a time-series) the same results are obtained. We address the deterministic exploration vs. exploitation issue, explaining the way in which the proposed method deterministically finds an effective dynamic trade-off based solely in the input-data, in contrast to other methods that use a random number generator.
Resumo:
Of the many state-of-the-art methods for cooperative localization in wireless sensor networks (WSN), only very few adapt well to mobile networks. The main problems of the well-known algorithms, based on nonparametric belief propagation (NBP), are the high communication cost and inefficient sampling techniques. Moreover, they either do not use smoothing or just apply it o ine. Therefore, in this article, we propose more flexible and effcient variants of NBP for cooperative localization in mobile networks. In particular, we provide: i) an optional 1-lag smoothing done almost in real-time, ii) a novel low-cost communication protocol based on package approximation and censoring, iii) higher robustness of the standard mixture importance sampling (MIS) technique, and iv) a higher amount of information in the importance densities by using the population Monte Carlo (PMC) approach, or an auxiliary variable. Through extensive simulations, we confirmed that all the proposed techniques outperform the standard NBP method.
Resumo:
Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.
Resumo:
Electronic devices endowed with camera platforms require new and powerful machine vision applications, which commonly include moving object detection strategies. To obtain high-quality results, the most recent strategies estimate nonparametrically background and foreground models and combine them by means of a Bayesian classifier. However, typical classifiers are limited by the use of constant prior values and they do not allow the inclusion of additional spatiodependent prior information. In this Letter, we propose an alternative Bayesian classifier that, unlike those reported before, allows the use of additional prior information obtained from any source and depending on the spatial position of each pixel.
Resumo:
Forecasting the AC power output of a PV plant accurately is important both for plant owners and electric system operators. Two main categories of PV modeling are available: the parametric and the nonparametric. In this paper, a methodology using a nonparametric PV model is proposed, using as inputs several forecasts of meteorological variables from a Numerical Weather Forecast model, and actual AC power measurements of PV plants. The methodology was built upon the R environment and uses Quantile Regression Forests as machine learning tool to forecast AC power with a confidence interval. Real data from five PV plants was used to validate the methodology, and results show that daily production is predicted with an absolute cvMBE lower than 1.3%.
Resumo:
A novel GPU-based nonparametric moving object detection strategy for computer vision tools requiring real-time processing is proposed. An alternative and efficient Bayesian classifier to combine nonparametric background and foreground models allows increasing correct detections while avoiding false detections. Additionally, an efficient region of interest analysis significantly reduces the computational cost of the detections.