10 resultados para Nonmagnetic element doped semiconductor

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermediate band formation on silicon layers for solar cell applications was achieved by titanium implantation and laser annealing. A two-layer heterogeneous system, formed by the implanted layer and by the un-implanted substrate, was formed. In this work, we present for the first time electrical characterization results which show that recombination is suppressed when the Ti concentration is high enough to overcome the Mott limit, in agreement with the intermediate band theory. Clear differences have been observed between samples implanted with doses under or over the Mott limit. Samples implanted under the Mott limit have capacitance values much lower than the un-implanted ones as corresponds to a highly doped semiconductor Schottky junction. However, when the Mott limit is surpassed, the samples have much higher capacitance, revealing that the intermediate band is formed. The capacitance increasing is due to the big amount of charge trapped at the intermediate band, even at low temperatures. Ti deep levels have been measured by admittance spectroscopy. These deep levels are located at energies which vary from 0.20 to 0.28?eV below the conduction band for implantation doses in the range 1013-1014 at./cm2. For doses over the Mott limit, the implanted atoms become nonrecombinant. Capacitance voltage transient technique measurements prove that the fabricated devices consist of two-layers, in which the implanted layer and the substrate behave as an n+/n junction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cu2ZnSnS4 (CZTS) semiconductor is a potential photovoltaic material due to its optoelectronic properties. These optoelectronic properties can be potentially improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using Cr as an impurity. We carried out first-principles calculations within the density functional theory analyzing three substitutions: Cu, Sn, or Zn by Cr. In all cases, the Cr introduces a deeper band into the host energy bandgap. Depending on the substitution, this band is full, empty, or partially full. The absorption coefficients in the independent-particle approximation have also been obtained. Comparison between the pure and doped host's absorption coefficients shows that this deeper band opens more photon absorption channels and could therefo:e increase the solar-light absorption with respect to the host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cadmium thioindate spinel CdIn2S4 semiconductor has potential applications for optoelectronic devices. We present a theoretical study of the structural and optoelectronic properties of the host and of the Cr-doped ternary spinel. For the host spinel, we analyze the direct or indirect character of the energy bandgap, the change of the energy bandgap with the anion displacement parameter and with the site cation distribution, and the optical properties. The main effect of the Cr doping is the creation of an intermediate band within the energy bandgap. The character and the occupation of this band are analyzed for two substitutions: Cr by In and Cr by Cd. This band permits more channels for the photon absorption. The optical properties are obtained and analyzed. The absorption coefficients are decomposed into contributions from the different absorption channels and from the inter-and intra-atomic components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic properties and the low environmental impact of Cu 3 BiS 3 make this compound a promising material for low-cost thin film solar cell technology. From the first principles, the electronic properties of the isoelectronic substitution of S by O in Cu 3 BiS 3 have been obtained using two different exchange-correlation potentials. This compound has an acceptor level below the conduction band, which modifies the opto-electronic properties with respect to the host semiconductor. In order to analyze a possible efficiency increment with respect to the host semiconductor, we have calculated the maximum efficiency of this photovoltaic absorber material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using photocatalysis for energy applications depends, more than for environmental purposes or selective chemical synthesis, on converting as much of the solar spectrum as possible; the best photocatalyst, titania, is far from this. Many efforts are pursued to use better that spectrum in photocatalysis, by doping titania or using other materials (mainly oxides, nitrides and sulphides) to obtain a lower bandgap, even if this means decreasing the chemical potential of the electron-hole pairs. Here we introduce an alternative scheme, using an idea recently proposed for photovoltaics: the intermediate band (IB) materials. It consists in introducing in the gap of a semiconductor an intermediate level which, acting like a stepstone, allows an electron jumping from the valence band to the conduction band in two steps, each one absorbing one sub-bandgap photon. For this the IB must be partially filled, to allow both sub-bandgap transitions to proceed at comparable rates; must be made of delocalized states to minimize nonradiative recombination; and should not communicate electronically with the outer world. For photovoltaic use the optimum efficiency so achievable, over 1.5 times that given by a normal semiconductor, is obtained with an overall bandgap around 2.0 eV (which would be near-optimal also for water phtosplitting). Note that this scheme differs from the doping principle usually considered in photocatalysis, which just tries to decrease the bandgap; its aim is to keep the full bandgap chemical potential but using also lower energy photons. In the past we have proposed several IB materials based on extensively doping known semiconductors with light transition metals, checking first of all with quantum calculations that the desired IB structure results. Subsequently we have synthesized in powder form two of them: the thiospinel In2S3 and the layered compound SnS2 (having bandgaps of 2.0 and 2.2 eV respectively) where the octahedral cation is substituted at a â?10% level with vanadium, and we have verified that this substitution introduces in the absorption spectrum the sub-bandgap features predicted by the calculations. With these materials we have verified, using a simple reaction (formic acid oxidation), that the photocatalytic spectral response is indeed extended to longer wavelengths, being able to use even 700 nm photons, without largely degrading the response for above-bandgap photons (i.e. strong recombination is not induced) [3b, 4]. These materials are thus promising for efficient photoevolution of hydrogen from water; work on this is being pursued, the results of which will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (fem). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterization of the NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NWs diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectra of Si NWs, where it is demonstrated that temperature induced by the laser beam play a major role in shaping the Raman spectrum of Si NWs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a theoretical study of the structural and electronic properties of the M-doped MgIn2S4 ternary spinel semiconductor with M = V, Cr, and Mn. All substitutions, in the normal and in the inverse structure, are analyzed. Some of these possible substitutions present intermediate-band states in the band gap with a different occupation for a spin component. It increases the possibilities of inter-band transitions and could be interesting for applications in optoelectronic devices. The contribution to, and the electronic configuration of, these intermediate bands for the octahedral and tetrahedral sites is analyzed and discussed. The study of the substitutional energies indicates that these substitutions are favorable. Comparison between the pure and doped hosts absorption coefficients shows that this deeper band opens up more photon absorption channels and could therefore increase the solar-light absorption with respect to the host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (FEM). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterisation of NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NW's diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectrum of Si NWs. It is demonstrated that the temperature increase induced by the laser beam plays a major role in shaping the Raman spectrum of Si NWs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CdIn2S4 spinel semiconductor is a potential photovoltaic material due to its energy band gap and absorption properties. These optoelectronic properties can be potentiality improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using M = Cr, V and Mn as an impurity. We analyze with first-principles almost all substitutions of the host atoms by M at the octahedral and tetrahedral sites in the normal and inverse spinel structures. In almost all cases, the impurities introduce deeper bands into the host energy bandgap. Depending on the site substitution, these bands are full, empty or partially-full. It increases the number of possible inter-band transitions and the possible applications in optoelectronic devices. The contribution of the impurity states to these bands and the substitutional energies indicate that these impurities are energetically favorable for some sites in the host spinel. The absorption coefficients in the independent-particle approximation show that these deeper bands open additional photon absorption channels. It could therefore increase the solar-light absorption with respect to the host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The substitution of Cu, Sn or Zn in the quaternary Cu2ZnSnS4 semiconductor by impurities that introduce intermediate states in the energy bandgap could have important implications either for photovoltaic or spintronic applications. This allows more generation–recombination channels than for the host semiconductor. We explore and discuss this possibility by obtaining the ionization energies from total energy first-principles calculations. The three substitutions of Cu, Sn and Zn by impurities are analyzed. From these results we have found that several impurities have an amphoteric behavior with the donor and acceptor energies in the energy bandgap. In order to analyze the role of the ionization energies in both the radiative and non-radiative processes, the host energy bandgap and the acceptor and the donor energies have been obtained as a function of the inward and outward impurity-S displacements. We carried out the analysis for both the natural and synthetic CZTS. The results show that the ionization energies are similar, whereas the energy band gaps are different.