26 resultados para Nondegenerate Parametric Amplification
em Universidad Politécnica de Madrid
Resumo:
Seeding plasma-based softx-raylaser (SXRL) demonstrated diffraction-limited, fully coherent in space and in time beam but with energy not exceeding 1 μJ per pulse. Quasi-steady-state (QSS) plasmas demonstrated to be able to store high amount of energy and then amplify incoherent SXRL up to several mJ. Using 1D time-dependant Bloch–Maxwell model including amplification of noise, we demonstrated that femtosecond HHG cannot be efficiently amplified in QSS plasmas. However, using Chirped Pulse Amplification concept on HHG seed allows to extract most of the stored energy, reaching up to 5 mJ in fully coherent pulses that can be compressed down to 130 fs.
Resumo:
A straightforward unprecedented sublimation protocol that reveals both conversion of a racemic compound into a racemic conglomerate and subsequent enantioenrichment has been developed for the proteinogenic amino acid valine. The phenomenon has been observed in closed and open systems, providing insight into asymmetric amplification mechanisms under presumably prebiotic conditions
Resumo:
The amplification of high-order harmonics (HOH) in a plasma-based amplifier is a multiscale, temporal phenomenon that couples plasma hydrodynamics, atomic processes, and HOH electromagnetic fields. We use a one-dimensional, time-dependent Maxwell-Bloch code to compare the natural amplification regime and another regime where plasma polarization is constantly forced by the HOH. In this regime, a 10-MW (i.e., 100 times higher than current seeded soft x-ray laser power), 1.5-μJ, 140-fs pulse free from the parasitic temporal structures appearing on the natural amplification regime can be obtained.
Resumo:
Un modelo numérico llamado elemento junta expansiva fue programado para simular la expansión mecánica del óxido y estudiar la fisuración en el hormigón circundante. El elemento junta expansiva trabaja con elementos finitos con fisura cohesiva embebida adaptable para simular la fractura del hormigón según el modelo de fisura cohesiva. Se ha comprobado que el modelo reproduce correctamente el patrón de fisuración del hormigón que se obtiene en ensayos de corrosión acelerada. En este trabajo, se realiza un estudio paramétrico del elemento junta expansiva para establecer los límites de los parámetros constitutivos del óxido. Se simula una cierta expansión variando los valores de los parámetros del óxido y se estudian la apertura de fisura y las tensiones resultantes en el hormigón. Se determina el rango de valores para los que los resultados de las simulaciones son prácticamente iguales, con el menor número posible de iteraciones.
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
Abstract interpretation has been widely used for the analysis of object-oriented languages and, in particular, Java source and bytecode. However, while most existing work deals with the problem of flnding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying flxpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based—) flxpoint algorithms rely on relatively inefHcient techniques for solving inter-procedural caligraphs or are speciflc and tied to particular analyses. We also argüe that the design of an efficient fixpoint algorithm is pivotal to supporting the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. The algorithm is parametric -in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins"-, multivariant, and flow-sensitive. Also, is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are given and discussed with an example. We also provide some performance data from a preliminary implementation of the analysis.
Resumo:
Abstract interpretation has been widely used for the analysis of object-oriented languages and, more precisely, Java source and bytecode. However, while most of the existing work deals with the problem of finding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying fixpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based) fixpoint algorithms rely on relatively inefficient techniques to solve inter-procedural call graphs or are specific and tied to particular analyses. We argue that the design of an efficient fixpoint algorithm is pivotal to support the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. Also, the algorithm is parametric in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins". It is also incremental in the sense that, if desired, analysis data can be saved so that only a reduced amount of reanalysis is needed after a small program change, which can be instrumental for large programs. The algorithm is also multivariant and flowsensitive. Finally, another interesting characteristic of the algorithm is that it is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are provided and discussed with an example.
Resumo:
The objective of this paper is to analyse the influence of the variation of some parameters used in the analysis of the dynamic response of offshore structures under the action of wind generated waves. The structural response has been obtained by stochastic methods using two discretization models. One with lumped parameters, using translational degrees of freedom (d.o.f.) and the other with one-dimensional finite elements. Using each of these methods the problem has been solved with several d.o.f., analysing the influence of the number of d.o.f. on the results.
Resumo:
The Top-Hat hot electron light emission and lasing in semiconductor heterostructure (HELLISH)-vertical cavity semiconductor optical amplifier (VCSOA) is a modified version of a HELLISH-VCSOA device. It has a shorter p-channel and longer n-channel. The device studied in this work consists of a simple GaAs p-i-n junction, containing 11 Ga0.35In0.65 N0.02As0.08/GaAs multiple quantum wells in its intrinsic region; the active region is enclosed between six pairs of GaAs/AlAs top distributed Bragg reflector (DBR) mirrors and 20.5 pairs of AlAs/GaAs bottom DBR mirrors. The operation of the device is based on longitudinal current transport parallel to the layers of the GaAs p-n junction. The device is characterised through I-V-L and by spectral photoluminescence, electroluminescence and electro-photoluminescence measurements. An amplification of about 25 dB is observed at applied voltages of around V = 88 V.
Resumo:
This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.
Resumo:
The purpose of this work is twofold: first, to develop a process to automatically create parametric models of the aorta that can adapt to any possible intraoperative deformation of the vessel. Second, it intends to provide the tools needed to perform this deformation in real time, by means of a non-rigid registration method. This dynamically deformable model will later be used in a VR-based surgery guidance system for aortic catheterism procedures, showing the vessel changes in real time.
Resumo:
The pendular motion of a giant censer (O Botafumeiro) that hangs in the transept of the cathedral of Santiago de Compostela, and is cyclically pumped by men who pull at the supporting rope, is analyzed. Maximum angular amplitude attainable, and number of cycles and time needed to attain it, are calculated; the results agree with observed values (~ 82°, ~ 17 cycles, ~ 80 seconds) to the few percent accuracy of both the analysis and the observations and parameter measurements. The energy gain in a pumping cycle is obtained for an arbitrary pumping procedure to two orders in the small fractional change of pendular length; the relevance of the ratio (characteristic radial acceleration during pumping)/g to the gain is discussed- Effects due to rope mass, air drag on both Censer and rope, and the fact that the Censer is not a point mass, are considered. If the pumping cycle is inverted once the maximum amplitude has been attained, the Censer could be swiftly brought to rest, avoiding the usual violent stop. Historically recorded accidents, rope shape, and the influence of relevant parameters on the motion are discussed.
Resumo:
A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 105 cells ml−1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity.
Resumo:
Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.
Resumo:
In a crosswind scenario, the risk of high-speed trains overturning increases when they run on viaducts since the aerodynamic loads are higher than on the ground. In order to increase safety, vehicles are sheltered by fences that are installed on the viaduct to reduce the loads experienced by the train. Windbreaks can be designed to have different heights, and with or without eaves on the top. In this paper, a parametric study with a total of 12 fence designs was carried out using a two-dimensional model of a train standing on a viaduct. To asses the relative effectiveness of sheltering devices, tests were done in a wind tunnel with a scaled model at a Reynolds number of 1 × 105, and the train’s aerodynamic coefficients were measured. Experimental results were compared with those predicted by Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations of flow, showing that a computational model is able to satisfactorily predict the trend of the aerodynamic coefficients. In a second set of tests, the Reynolds number was increased to 12 × 106 (at a free flow air velocity of 30 m/s) in order to simulate strong wind conditions. The aerodynamic coefficients showed a similar trend for both Reynolds numbers; however, their numerical value changed enough to indicate that simulations at the lower Reynolds number do not provide all required information. Furthermore, the variation of coefficients in the simulations allowed an explanation of how fences modified the flow around the vehicle to be proposed. This made it clear why increasing fence height reduced all the coefficients but adding an eave had an effect mainly on the lift force coefficient. Finally, by analysing the time signals it was possible to clarify the influence of the Reynolds number on the peak-to-peak amplitude, the time period and the Strouhal number.