3 resultados para NICKEL(II)

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A member of the Cation Diffusion Facilitator (CDF) family with high sequence similarity to DmeF (Divalent metal efflux) from Cupridavirus metallidurans was identified in Rhizobium leguminosarum bv. viciae UPM1137. The R. leguminosarum dmeF mutant strain was highly sensitive to Co2+ and moderately sensitive to Ni2+, but its tolerance to other metals such as Zn2+, Cu2+ or Mn2+ was unaffected. An open reading frame located upstream of R. leguminosarum dmeF, designated dmeR, encodes a protein homologous to the nickel and cobalt regulator RcnR from E.coli. Expression of the dmeRF operon was induced by nickel and cobalt ions in free-living cells, likely by alleviating DmeR-mediated transcriptional repression of the operon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metals such as Fe, Cu, Mn, Ni, or Co are essential nutrients, as they are constitutive elements of a significant fraction of cell proteins. Such metals are present in the active site of many enzymes, and also participate as structural elements in different proteins. From a chemical point of view, metals have a defined order of affinity for binding, designated as the Irving-Williams series (Irving and Williams, 1948) Mg2+ menor que Mn2+ menor que Fe2+ menor que Co2+ menor que Ni2+ menor que Cu2+mayor queZn2+ Since cells contain a high number of different proteins harbouring different metal ions, a simplistic model in which proteins are synthesized and metals imported into a ?cytoplasmic soup? cannot explain the final product that we find in the cell. Instead we need to envisage a complex model in which specific ligands are present in definite amounts to leave the right amounts of available metals and protein binding sites, so specific pairs can bind appropriately. A critical control on the amount of ligands and metal present is exerted through specific metal-responsive regulators able to induce the synthesis of the right amount of ligands (essentially metal binding proteins), import and efflux proteins. These systems are adapted to establish the metal-protein equilibria compatible with the formation of the right metalloprotein complexes. Understanding this complex network of interactions is central to the understanding of metal metabolism for the synthesis of metalloenzymes, a key topic in the Rhizobium-legume symbiosis. In the case of the Rhizobium leguminosarum bv viciae (Rlv) UPM791 -Pisum sativum symbiotic system, the concentration of nickel in the plant nutrient solution is a limiting factor for hydrogenase expression, and provision of high amounts of this element to the plant nutrient solution is required to ensure optimal levels of enzyme synthesis (Brito et al., 1994).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria require nickel transporters for the synthesis of Ni-containing metalloenzymes in natural, low nickel habitats. In this work we carry out functional and topological characterization of Rhizobium leguminosarum HupE, a nickel permease required for the provision of this element for [NiFe] hydrogenase synthesis. Expression studies in the Escherichia coli nikABCDE mutant strain HYD723 revealed that HupE is a medium-affinity permease (apparent Km 227 ! 21 nM; Vmax 49 ! 21 pmol Ni2+ min"1 mg"1 bacterial dry weight) that functions as an energy-independent diffusion facilitator for the uptake of Ni(II) ions. This Ni2+ transport is not inhibited by similar cations such as Mn2+, Zn2+, or Co2+, but is blocked by Cu2+. Analysis of site-directed HupE mutants allowed the identification of several residues (H36, D42, H43, F69, E90, H130, and E133) that are essential for HupE-mediated Ni uptake in E. coli cells. By using translational fusions to reporter genes we demonstrated the presence of five transmembrane domains with a periplasmic N-terminal domain and a C-terminal domain buried in the lipid bilayer. The periplasmic N-terminal domain contributes to stability and functionality of the protein