55 resultados para Multi-Exposure Plate Images Processing
em Universidad Politécnica de Madrid
Resumo:
Most of the present digital images processing methods are related with objective characterization of external properties as shape, form or colour. This information concerns objective characteristics of different bodies and is applied to extract details to perform several different tasks. But in some occasions, some other type of information is needed. This is the case when the image processing system is going to be applied to some operation related with living bodies. In this case, some other type of object information may be useful. As a matter of fact, it may give additional knowledge about its subjective properties. Some of these properties are object symmetry, parallelism between lines and the feeling of size. These types of properties concerns more to internal sensations of living beings when they are related with their environment than to the objective information obtained by artificial systems. This paper presents an elemental system able to detect some of the above-mentioned parameters. A first mathematical model to analyze these situations is reported. This theoretical model will give the possibility to implement a simple working system. The basis of this system is the use of optical logic cells, previously employed in optical computing.
Resumo:
La embriogénesis es el proceso mediante el cual una célula se convierte en un ser un vivo. A lo largo de diferentes etapas de desarrollo, la población de células va proliferando a la vez que el embrión va tomando forma y se configura. Esto es posible gracias a la acción de varios procesos genéticos, bioquímicos y mecánicos que interaccionan y se regulan entre ellos formando un sistema complejo que se organiza a diferentes escalas espaciales y temporales. Este proceso ocurre de manera robusta y reproducible, pero también con cierta variabilidad que permite la diversidad de individuos de una misma especie. La aparición de la microscopía de fluorescencia, posible gracias a proteínas fluorescentes que pueden ser adheridas a las cadenas de expresión de las células, y los avances en la física óptica de los microscopios han permitido observar este proceso de embriogénesis in-vivo y generar secuencias de imágenes tridimensionales de alta resolución espacio-temporal. Estas imágenes permiten el estudio de los procesos de desarrollo embrionario con técnicas de análisis de imagen y de datos, reconstruyendo dichos procesos para crear la representación de un embrión digital. Una de las más actuales problemáticas en este campo es entender los procesos mecánicos, de manera aislada y en interacción con otros factores como la expresión genética, para que el embrión se desarrolle. Debido a la complejidad de estos procesos, estos problemas se afrontan mediante diferentes técnicas y escalas específicas donde, a través de experimentos, pueden hacerse y confrontarse hipótesis, obteniendo conclusiones sobre el funcionamiento de los mecanismos estudiados. Esta tesis doctoral se ha enfocado sobre esta problemática intentando mejorar las metodologías del estado del arte y con un objetivo específico: estudiar patrones de deformación que emergen del movimiento organizado de las células durante diferentes estados del desarrollo del embrión, de manera global o en tejidos concretos. Estudios se han centrado en la mecánica en relación con procesos de señalización o interacciones a nivel celular o de tejido. En este trabajo, se propone un esquema para generalizar el estudio del movimiento y las interacciones mecánicas que se desprenden del mismo a diferentes escalas espaciales y temporales. Esto permitiría no sólo estudios locales, si no estudios sistemáticos de las escalas de interacción mecánica dentro de un embrión. Por tanto, el esquema propuesto obvia las causas de generación de movimiento (fuerzas) y se centra en la cuantificación de la cinemática (deformación y esfuerzos) a partir de imágenes de forma no invasiva. Hoy en día las dificultades experimentales y metodológicas y la complejidad de los sistemas biológicos impiden una descripción mecánica completa de manera sistemática. Sin embargo, patrones de deformación muestran el resultado de diferentes factores mecánicos en interacción con otros elementos dando lugar a una organización mecánica, necesaria para el desarrollo, que puede ser cuantificado a partir de la metodología propuesta en esta tesis. La metodología asume un medio continuo descrito de forma Lagrangiana (en función de las trayectorias de puntos materiales que se mueven en el sistema en lugar de puntos espaciales) de la dinámica del movimiento, estimado a partir de las imágenes mediante métodos de seguimiento de células o de técnicas de registro de imagen. Gracias a este esquema es posible describir la deformación instantánea y acumulada respecto a un estado inicial para cualquier dominio del embrión. La aplicación de esta metodología a imágenes 3D + t del pez zebra sirvió para desvelar estructuras mecánicas que tienden a estabilizarse a lo largo del tiempo en dicho embrión, y que se organizan a una escala semejante al del mapa de diferenciación celular y con indicios de correlación con patrones de expresión genética. También se aplicó la metodología al estudio del tejido amnioserosa de la Drosophila (mosca de la fruta) durante el cierre dorsal, obteniendo indicios de un acoplamiento entre escalas subcelulares, celulares y supracelulares, que genera patrones complejos en respuesta a la fuerza generada por los esqueletos de acto-myosina. En definitiva, esta tesis doctoral propone una estrategia novedosa de análisis de la dinámica celular multi-escala que permite cuantificar patrones de manera inmediata y que además ofrece una representación que reconstruye la evolución de los procesos como los ven las células, en lugar de como son observados desde el microscopio. Esta metodología por tanto permite nuevas formas de análisis y comparación de embriones y tejidos durante la embriogénesis a partir de imágenes in-vivo. ABSTRACT The embryogenesis is the process from which a single cell turns into a living organism. Through several stages of development, the cell population proliferates at the same time the embryo shapes and the organs develop gaining their functionality. This is possible through genetic, biochemical and mechanical factors that are involved in a complex interaction of processes organized in different levels and in different spatio-temporal scales. The embryogenesis, through this complexity, develops in a robust and reproducible way, but allowing variability that makes possible the diversity of living specimens. The advances in physics of microscopes and the appearance of fluorescent proteins that can be attached to expression chains, reporting about structural and functional elements of the cell, have enabled for the in-vivo observation of embryogenesis. The imaging process results in sequences of high spatio-temporal resolution 3D+time data of the embryogenesis as a digital representation of the embryos that can be further analyzed, provided new image processing and data analysis techniques are developed. One of the most relevant and challenging lines of research in the field is the quantification of the mechanical factors and processes involved in the shaping process of the embryo and their interactions with other embryogenesis factors such as genetics. Due to the complexity of the processes, studies have focused on specific problems and scales controlled in the experiments, posing and testing hypothesis to gain new biological insight. However, methodologies are often difficult to be exported to study other biological phenomena or specimens. This PhD Thesis is framed within this paradigm of research and tries to propose a systematic methodology to quantify the emergent deformation patterns from the motion estimated in in-vivo images of embryogenesis. Thanks to this strategy it would be possible to quantify not only local mechanisms, but to discover and characterize the scales of mechanical organization within the embryo. The framework focuses on the quantification of the motion kinematics (deformation and strains), neglecting the causes of the motion (forces), from images in a non-invasive way. Experimental and methodological challenges hamper the quantification of exerted forces and the mechanical properties of tissues. However, a descriptive framework of deformation patterns provides valuable insight about the organization and scales of the mechanical interactions, along the embryo development. Such a characterization would help to improve mechanical models and progressively understand the complexity of embryogenesis. This framework relies on a Lagrangian representation of the cell dynamics system based on the trajectories of points moving along the deformation. This approach of analysis enables the reconstruction of the mechanical patterning as experienced by the cells and tissues. Thus, we can build temporal profiles of deformation along stages of development, comprising both the instantaneous events and the cumulative deformation history. The application of this framework to 3D + time data of zebrafish embryogenesis allowed us to discover mechanical profiles that stabilized through time forming structures that organize in a scale comparable to the map of cell differentiation (fate map), and also suggesting correlation with genetic patterns. The framework was also applied to the analysis of the amnioserosa tissue in the drosophila’s dorsal closure, revealing that the oscillatory contraction triggered by the acto-myosin network organized complexly coupling different scales: local force generation foci, cellular morphology control mechanisms and tissue geometrical constraints. In summary, this PhD Thesis proposes a theoretical framework for the analysis of multi-scale cell dynamics that enables to quantify automatically mechanical patterns and also offers a new representation of the embryo dynamics as experienced by cells instead of how the microscope captures instantaneously the processes. Therefore, this framework enables for new strategies of quantitative analysis and comparison between embryos and tissues during embryogenesis from in-vivo images.
Resumo:
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead
Resumo:
We present an innovative system to encode and transmit textured multi-resolution 3D meshes in a progressive way, with no need to send several texture images, one for each mesh LOD (Level Of Detail). All texture LODs are created from the finest one (associated to the finest mesh), but can be re- constructed progressively from the coarsest thanks to refinement images calculated in the encoding process, and transmitted only if needed. This allows us to adjust the LOD/quality of both 3D mesh and texture according to the rendering power of the device that will display them, and to the network capacity. Additionally, we achieve big savings in data transmission by avoiding altogether texture coordinates, which are generated automatically thanks to an unwrapping system agreed upon by both encoder and decoder.
Resumo:
Abstract The creation of atlases, or digital models where information from different subjects can be combined, is a field of increasing interest in biomedical imaging. When a single image does not contain enough information to appropriately describe the organism under study, it is then necessary to acquire images of several individuals, each of them containing complementary data with respect to the rest of the components in the cohort. This approach allows creating digital prototypes, ranging from anatomical atlases of human patients and organs, obtained for instance from Magnetic Resonance Imaging, to gene expression cartographies of embryo development, typically achieved from Light Microscopy. Within such context, in this PhD Thesis we propose, develop and validate new dedicated image processing methodologies that, based on image registration techniques, bring information from multiple individuals into alignment within a single digital atlas model. We also elaborate a dedicated software visualization platform to explore the resulting wealth of multi-dimensional data and novel analysis algo-rithms to automatically mine the generated resource in search of bio¬logical insights. In particular, this work focuses on gene expression data from developing zebrafish embryos imaged at the cellular resolution level with Two-Photon Laser Scanning Microscopy. Disposing of quantitative measurements relating multiple gene expressions to cell position and their evolution in time is a fundamental prerequisite to understand embryogenesis multi-scale processes. However, the number of gene expressions that can be simultaneously stained in one acquisition is limited due to optical and labeling constraints. These limitations motivate the implementation of atlasing strategies that can recreate a virtual gene expression multiplex. The developed computational tools have been tested in two different scenarios. The first one is the early zebrafish embryogenesis where the resulting atlas constitutes a link between the phenotype and the genotype at the cellular level. The second one is the late zebrafish brain where the resulting atlas allows studies relating gene expression to brain regionalization and neurogenesis. The proposed computational frameworks have been adapted to the requirements of both scenarios, such as the integration of partial views of the embryo into a whole embryo model with cellular resolution or the registration of anatom¬ical traits with deformable transformation models non-dependent on any specific labeling. The software implementation of the atlas generation tool (Match-IT) and the visualization platform (Atlas-IT) together with the gene expression atlas resources developed in this Thesis are to be made freely available to the scientific community. Lastly, a novel proof-of-concept experiment integrates for the first time 3D gene expression atlas resources with cell lineages extracted from live embryos, opening up the door to correlate genetic and cellular spatio-temporal dynamics. La creación de atlas, o modelos digitales, donde la información de distintos sujetos puede ser combinada, es un campo de creciente interés en imagen biomédica. Cuando una sola imagen no contiene suficientes datos como para describir apropiadamente el organismo objeto de estudio, se hace necesario adquirir imágenes de varios individuos, cada una de las cuales contiene información complementaria respecto al resto de componentes del grupo. De este modo, es posible crear prototipos digitales, que pueden ir desde atlas anatómicos de órganos y pacientes humanos, adquiridos por ejemplo mediante Resonancia Magnética, hasta cartografías de la expresión genética del desarrollo de embrionario, típicamente adquiridas mediante Microscopía Optica. Dentro de este contexto, en esta Tesis Doctoral se introducen, desarrollan y validan nuevos métodos de procesado de imagen que, basándose en técnicas de registro de imagen, son capaces de alinear imágenes y datos provenientes de múltiples individuos en un solo atlas digital. Además, se ha elaborado una plataforma de visualization específicamente diseñada para explorar la gran cantidad de datos, caracterizados por su multi-dimensionalidad, que resulta de estos métodos. Asimismo, se han propuesto novedosos algoritmos de análisis y minería de datos que permiten inspeccionar automáticamente los atlas generados en busca de conclusiones biológicas significativas. En particular, este trabajo se centra en datos de expresión genética del desarrollo embrionario del pez cebra, adquiridos mediante Microscopía dos fotones con resolución celular. Disponer de medidas cuantitativas que relacionen estas expresiones genéticas con las posiciones celulares y su evolución en el tiempo es un prerrequisito fundamental para comprender los procesos multi-escala característicos de la morfogénesis. Sin embargo, el número de expresiones genéticos que pueden ser simultáneamente etiquetados en una sola adquisición es reducido debido a limitaciones tanto ópticas como del etiquetado. Estas limitaciones requieren la implementación de estrategias de creación de atlas que puedan recrear un multiplexado virtual de expresiones genéticas. Las herramientas computacionales desarrolladas han sido validadas en dos escenarios distintos. El primer escenario es el desarrollo embrionario temprano del pez cebra, donde el atlas resultante permite constituir un vínculo, a nivel celular, entre el fenotipo y el genotipo de este organismo modelo. El segundo escenario corresponde a estadios tardíos del desarrollo del cerebro del pez cebra, donde el atlas resultante permite relacionar expresiones genéticas con la regionalización del cerebro y la formación de neuronas. La plataforma computacional desarrollada ha sido adaptada a los requisitos y retos planteados en ambos escenarios, como la integración, a resolución celular, de vistas parciales dentro de un modelo consistente en un embrión completo, o el alineamiento entre estructuras de referencia anatómica equivalentes, logrado mediante el uso de modelos de transformación deformables que no requieren ningún marcador específico. Está previsto poner a disposición de la comunidad científica tanto la herramienta de generación de atlas (Match-IT), como su plataforma de visualización (Atlas-IT), así como las bases de datos de expresión genética creadas a partir de estas herramientas. Por último, dentro de la presente Tesis Doctoral, se ha incluido una prueba conceptual innovadora que permite integrar los mencionados atlas de expresión genética tridimensionales dentro del linaje celular extraído de una adquisición in vivo de un embrión. Esta prueba conceptual abre la puerta a la posibilidad de correlar, por primera vez, las dinámicas espacio-temporales de genes y células.
Resumo:
One of the main challenges facing next generation Cloud platform services is the need to simultaneously achieve ease of programming, consistency, and high scalability. Big Data applications have so far focused on batch processing. The next step for Big Data is to move to the online world. This shift will raise the requirements for transactional guarantees. CumuloNimbo is a new EC-funded project led by Universidad Politécnica de Madrid (UPM) that addresses these issues via a highly scalable multi-tier transactional platform as a service (PaaS) that bridges the gap between OLTP and Big Data applications.
Resumo:
This paper presents the development of the robotic multi-agent system SMART. In this system, the agent concept is applied to both hardware and software entities. Hardware agents are robots, with three and four legs, and an IP-camera that takes images of the scene where the cooperative task is carried out. Hardware agents strongly cooperate with software agents. These latter agents can be classified into image processing, communications, task management and decision making, planning and trajectory generation agents. To model, control and evaluate the performance of cooperative tasks among agents, a kind of PetriNet, called Work-Flow Petri Net, is used. Experimental results shows the good performance of the system.
Resumo:
In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.
Resumo:
Monument conservation is related to the interaction between the original petrological parameters of the rock and external factors in the area where the building is sited, such as weather conditions, pollution, and so on. Depending on the environmental conditions and the characteristics of the materials used, different types of weathering predominate. In all, the appearance of surface crusts constitutes a first stage, whose origin can often be traced to the properties of the material itself. In the present study, different colours of “patinas” were distinguished by defining the threshold levels of greys associated with “pathology” in the histogram. These data were compared to background information and other parameters, such as mineralogical composition, porosity, and so on, as well as other visual signs of deterioration. The result is a map of the pathologies associated with “cover films” on monuments, which generate images by relating colour characteristics to desired properties or zones of interest.
Resumo:
Most fusion satellite image methodologies at pixel-level introduce false spatial details, i.e.artifacts, in the resulting fusedimages. In many cases, these artifacts appears because image fusion methods do not consider the differences in roughness or textural characteristics between different land covers. They only consider the digital values associated with single pixels. This effect increases as the spatial resolution image increases. To minimize this problem, we propose a new paradigm based on local measurements of the fractal dimension (FD). Fractal dimension maps (FDMs) are generated for each of the source images (panchromatic and each band of the multi-spectral images) with the box-counting algorithm and by applying a windowing process. The average of source image FDMs, previously indexed between 0 and 1, has been used for discrimination of different land covers present in satellite images. This paradigm has been applied through the fusion methodology based on the discrete wavelet transform (DWT), using the à trous algorithm (WAT). Two different scenes registered by optical sensors on board FORMOSAT-2 and IKONOS satellites were used to study the behaviour of the proposed methodology. The implementation of this approach, using the WAT method, allows adapting the fusion process to the roughness and shape of the regions present in the image to be fused. This improves the quality of the fusedimages and their classification results when compared with the original WAT method
Resumo:
This work is motivated in providing and evaluating a fusion algorithm of remotely sensed images, i.e. the fusion of a high spatial resolution panchromatic image with a multi-spectral image (also known as pansharpening) using the dual-tree complex wavelet transform (DT-CWT), an effective approach for conducting an analytic and oversampled wavelet transform to reduce aliasing, and in turn reduce shift dependence of the wavelet transform. The proposed scheme includes the definition of a model to establish how information will be extracted from the PAN band and how that information will be injected into the MS bands with low spatial resolution. The approach was applied to Spot 5 images where there are bands falling outside PAN’s spectrum. We propose an optional step in the quality evaluation protocol, which is to study the quality of the merger by regions, where each region represents a specific feature of the image. The results show that DT-CWT based approach offers good spatial quality while retaining the spectral information of original images, case SPOT 5. The additional step facilitates the identification of the most affected regions by the fusion process.
Resumo:
Infrared (IR) interferometry is a method for measuring the line-electron density of fusion plasmas. The significant performance achieved by FPGAs in solving digital signal processing tasks advocates the use of this type of technology in two-color IR interferometers of modern stellarators, such as the TJ-II (Madrid, Spain) and the future W7-X (Greifswald, Germany). In this work the implementation of a line-average electron density measuring system in an FPGA device is described. Several optimizations for multichannel systems are detailed and test results from the TJ-II as well as from a W7-X prototype are presented.
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.