2 resultados para MICRODISK INJECTION-LASER
em Universidad Politécnica de Madrid
Resumo:
One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (fem). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterization of the NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NWs diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectra of Si NWs, where it is demonstrated that temperature induced by the laser beam play a major role in shaping the Raman spectrum of Si NWs
Resumo:
We present simulation results on how power output-input characteristic Instability in Distributed FeedBack -DFB semiconductor laser diode SLA can be employed to implemented Boolean logic device. Two configurations of DFB Laser diode under external optical injection, either in the transmission or in the reflective mode of operation, is used to implement different Optical Logic Cells (OLCs), called the Q- and the P-Device OLCs. The external optical injection correspond to two inputs data plus a cw control signal that allows to choose the Boolean logic function to be implement. DFB laser diode parameters are choosing to obtain an output-input characteristic with the values desired. The desired values are mainly the on-off contrast and switching power, conforming shape of hysteretic cycle. Two DFB lasers in cascade, one working in transmission operation and the other one in reflective operation, allows designing an inputoutput characteristic based on the same respond of a self-electrooptic effect device is obtained. Input power for a bit'T' is 35 uW(70uW) and a bit "0" is zero for all the Boolean function to be execute. Device control signal range to choose the logic function is 0-140 uW (280 uW). Q-device (P-device)