7 resultados para MATLAB SIMULATION

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El interés cada vez mayor por las redes de sensores inalámbricos pueden ser entendido simplemente pensando en lo que esencialmente son: un gran número de pequeños nodos sensores autoalimentados que recogen información o detectan eventos especiales y se comunican de manera inalámbrica, con el objetivo final de entregar sus datos procesados a una estación base. Los nodos sensores están densamente desplegados dentro del área de interés, se pueden desplegar al azar y tienen capacidad de cooperación. Por lo general, estos dispositivos son pequeños y de bajo costo, de modo que pueden ser producidos y desplegados en gran numero aunque sus recursos en términos de energía, memoria, velocidad de cálculo y ancho de banda están enormemente limitados. Detección, tratamiento y comunicación son tres elementos clave cuya combinación en un pequeño dispositivo permite lograr un gran número de aplicaciones. Las redes de sensores proporcionan oportunidades sin fin, pero al mismo tiempo plantean retos formidables, tales como lograr el máximo rendimiento de una energía que es escasa y por lo general un recurso no renovable. Sin embargo, los recientes avances en la integración a gran escala, integrado de hardware de computación, comunicaciones, y en general, la convergencia de la informática y las comunicaciones, están haciendo de esta tecnología emergente una realidad. Del mismo modo, los avances en la nanotecnología están empezando a hacer que todo gire entorno a las redes de pequeños sensores y actuadores distribuidos. Hay diferentes tipos de sensores tales como sensores de presión, acelerómetros, cámaras, sensores térmicos o un simple micrófono. Supervisan las condiciones presentes en diferentes lugares tales como la temperatura, humedad, el movimiento, la luminosidad, presión, composición del suelo, los niveles de ruido, la presencia o ausencia de ciertos tipos de objetos, los niveles de tensión mecánica sobre objetos adheridos y las características momentáneas tales como la velocidad , la dirección y el tamaño de un objeto, etc. Se comprobara el estado de las Redes Inalámbricas de Sensores y se revisaran los protocolos más famosos. Así mismo, se examinara la identificación por radiofrecuencia (RFID) ya que se está convirtiendo en algo actual y su presencia importante. La RFID tiene un papel crucial que desempeñar en el futuro en el mundo de los negocios y los individuos por igual. El impacto mundial que ha tenido la identificación sin cables está ejerciendo fuertes presiones en la tecnología RFID, los servicios de investigación y desarrollo, desarrollo de normas, el cumplimiento de la seguridad y la privacidad y muchos más. Su potencial económico se ha demostrado en algunos países mientras que otros están simplemente en etapas de planificación o en etapas piloto, pero aun tiene que afianzarse o desarrollarse a través de la modernización de los modelos de negocio y aplicaciones para poder tener un mayor impacto en la sociedad. Las posibles aplicaciones de redes de sensores son de interés para la mayoría de campos. La monitorización ambiental, la guerra, la educación infantil, la vigilancia, la micro-cirugía y la agricultura son solo unos pocos ejemplos de los muchísimos campos en los que tienen cabida las redes mencionadas anteriormente. Estados Unidos de América es probablemente el país que más ha investigado en esta área por lo que veremos muchas soluciones propuestas provenientes de ese país. Universidades como Berkeley, UCLA (Universidad de California, Los Ángeles) Harvard y empresas como Intel lideran dichas investigaciones. Pero no solo EE.UU. usa e investiga las redes de sensores inalámbricos. La Universidad de Southampton, por ejemplo, está desarrollando una tecnología para monitorear el comportamiento de los glaciares mediante redes de sensores que contribuyen a la investigación fundamental en glaciología y de las redes de sensores inalámbricos. Así mismo, Coalesenses GmbH (Alemania) y Zurich ETH están trabajando en diversas aplicaciones para redes de sensores inalámbricos en numerosas áreas. Una solución española será la elegida para ser examinada más a fondo por ser innovadora, adaptable y polivalente. Este estudio del sensor se ha centrado principalmente en aplicaciones de tráfico, pero no se puede olvidar la lista de más de 50 aplicaciones diferentes que ha sido publicada por la firma creadora de este sensor específico. En la actualidad hay muchas tecnologías de vigilancia de vehículos, incluidos los sensores de bucle, cámaras de video, sensores de imagen, sensores infrarrojos, radares de microondas, GPS, etc. El rendimiento es aceptable, pero no suficiente, debido a su limitada cobertura y caros costos de implementación y mantenimiento, especialmente este ultimo. Tienen defectos tales como: línea de visión, baja exactitud, dependen mucho del ambiente y del clima, no se puede realizar trabajos de mantenimiento sin interrumpir las mediciones, la noche puede condicionar muchos de ellos, tienen altos costos de instalación y mantenimiento, etc. Por consiguiente, en las aplicaciones reales de circulación, los datos recibidos son insuficientes o malos en términos de tiempo real debido al escaso número de detectores y su costo. Con el aumento de vehículos en las redes viales urbanas las tecnologías de detección de vehículos se enfrentan a nuevas exigencias. Las redes de sensores inalámbricos son actualmente una de las tecnologías más avanzadas y una revolución en la detección de información remota y en las aplicaciones de recogida. Las perspectivas de aplicación en el sistema inteligente de transporte son muy amplias. Con este fin se ha desarrollado un programa de localización de objetivos y recuento utilizando una red de sensores binarios. Esto permite que el sensor necesite mucha menos energía durante la transmisión de información y que los dispositivos sean más independientes con el fin de tener un mejor control de tráfico. La aplicación se centra en la eficacia de la colaboración de los sensores en el seguimiento más que en los protocolos de comunicación utilizados por los nodos sensores. Las operaciones de salida y retorno en las vacaciones son un buen ejemplo de por qué es necesario llevar la cuenta de los coches en las carreteras. Para ello se ha desarrollado una simulación en Matlab con el objetivo localizar objetivos y contarlos con una red de sensores binarios. Dicho programa se podría implementar en el sensor que Libelium, la empresa creadora del sensor que se examinara concienzudamente, ha desarrollado. Esto permitiría que el aparato necesitase mucha menos energía durante la transmisión de información y los dispositivos sean más independientes. Los prometedores resultados obtenidos indican que los sensores de proximidad binarios pueden formar la base de una arquitectura robusta para la vigilancia de áreas amplias y para el seguimiento de objetivos. Cuando el movimiento de dichos objetivos es suficientemente suave, no tiene cambios bruscos de trayectoria, el algoritmo ClusterTrack proporciona un rendimiento excelente en términos de identificación y seguimiento de trayectorias los objetos designados como blancos. Este algoritmo podría, por supuesto, ser utilizado para numerosas aplicaciones y se podría seguir esta línea de trabajo para futuras investigaciones. No es sorprendente que las redes de sensores de binarios de proximidad hayan atraído mucha atención últimamente ya que, a pesar de la información mínima de un sensor de proximidad binario proporciona, las redes de este tipo pueden realizar un seguimiento de todo tipo de objetivos con la precisión suficiente. Abstract The increasing interest in wireless sensor networks can be promptly understood simply by thinking about what they essentially are: a large number of small sensing self-powered nodes which gather information or detect special events and communicate in a wireless fashion, with the end goal of handing their processed data to a base station. The sensor nodes are densely deployed inside the phenomenon, they deploy random and have cooperative capabilities. Usually these devices are small and inexpensive, so that they can be produced and deployed in large numbers, and so their resources in terms of energy, memory, computational speed and bandwidth are severely constrained. Sensing, processing and communication are three key elements whose combination in one tiny device gives rise to a vast number of applications. Sensor networks provide endless opportunities, but at the same time pose formidable challenges, such as the fact that energy is a scarce and usually non-renewable resource. However, recent advances in low power Very Large Scale Integration, embedded computing, communication hardware, and in general, the convergence of computing and communications, are making this emerging technology a reality. Likewise, advances in nanotechnology and Micro Electro-Mechanical Systems are pushing toward networks of tiny distributed sensors and actuators. There are different sensors such as pressure, accelerometer, camera, thermal, and microphone. They monitor conditions at different locations, such as temperature, humidity, vehicular movement, lightning condition, pressure, soil makeup, noise levels, the presence or absence of certain kinds of objects, mechanical stress levels on attached objects, the current characteristics such as speed, direction and size of an object, etc. The state of Wireless Sensor Networks will be checked and the most famous protocols reviewed. As Radio Frequency Identification (RFID) is becoming extremely present and important nowadays, it will be examined as well. RFID has a crucial role to play in business and for individuals alike going forward. The impact of ‘wireless’ identification is exerting strong pressures in RFID technology and services research and development, standards development, security compliance and privacy, and many more. The economic value is proven in some countries while others are just on the verge of planning or in pilot stages, but the wider spread of usage has yet to take hold or unfold through the modernisation of business models and applications. Possible applications of sensor networks are of interest to the most diverse fields. Environmental monitoring, warfare, child education, surveillance, micro-surgery, and agriculture are only a few examples. Some real hardware applications in the United States of America will be checked as it is probably the country that has investigated most in this area. Universities like Berkeley, UCLA (University of California, Los Angeles) Harvard and enterprises such as Intel are leading those investigations. But not just USA has been using and investigating wireless sensor networks. University of Southampton e.g. is to develop technology to monitor glacier behaviour using sensor networks contributing to fundamental research in glaciology and wireless sensor networks. Coalesenses GmbH (Germany) and ETH Zurich are working in applying wireless sensor networks in many different areas too. A Spanish solution will be the one examined more thoroughly for being innovative, adaptable and multipurpose. This study of the sensor has been focused mainly to traffic applications but it cannot be forgotten the more than 50 different application compilation that has been published by this specific sensor’s firm. Currently there are many vehicle surveillance technologies including loop sensors, video cameras, image sensors, infrared sensors, microwave radar, GPS, etc. The performance is acceptable but not sufficient because of their limited coverage and expensive costs of implementation and maintenance, specially the last one. They have defects such as: line-ofsight, low exactness, depending on environment and weather, cannot perform no-stop work whether daytime or night, high costs for installation and maintenance, etc. Consequently, in actual traffic applications the received data is insufficient or bad in terms of real-time owed to detector quantity and cost. With the increase of vehicle in urban road networks, the vehicle detection technologies are confronted with new requirements. Wireless sensor network is the state of the art technology and a revolution in remote information sensing and collection applications. It has broad prospect of application in intelligent transportation system. An application for target tracking and counting using a network of binary sensors has been developed. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices in order to have a better traffic control. The application is focused on the efficacy of collaborative tracking rather than on the communication protocols used by the sensor nodes. Holiday crowds are a good case in which it is necessary to keep count of the cars on the roads. To this end a Matlab simulation has been produced for target tracking and counting using a network of binary sensors that e.g. could be implemented in Libelium’s solution. Libelium is the enterprise that has developed the sensor that will be deeply examined. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices. The promising results obtained indicate that binary proximity sensors can form the basis for a robust architecture for wide area surveillance and tracking. When the target paths are smooth enough ClusterTrack particle filter algorithm gives excellent performance in terms of identifying and tracking different target trajectories. This algorithm could, of course, be used for different applications and that could be done in future researches. It is not surprising that binary proximity sensor networks have attracted a lot of attention lately. Despite the minimal information a binary proximity sensor provides, networks of these sensing modalities can track all kinds of different targets classes accurate enough.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable energy hybrid systems and mini-grids for electrification of rural areas are known to be reliable and more cost efficient than grid extension or only-diesel based systems. However, there is still some uncertainty in some areas, for example, which is the most efficient way of coupling hybrid systems: AC, DC or AC-DC? With the use of Matlab/Simulink a mini-grid that connects a school, a small hospital and an ecotourism hostel has been modelled. This same mini grid has been coupled in the different possible ways and the system’s efficiency has been studied. In addition, while keeping the consumption constant, the generation sources and the consumption profile have been modified and the effect on the efficiency under each configuration has also been analysed. Finally different weather profiles have been introduced and, again, the effect on the efficiency of each system has been observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to present a program written in Matlab-Octave for the simulation of the time evolution of student curricula, i.e, how students pass their subjects along time until graduation. The program computes, from the simulations, the academic performance rates for the subjects of the study plan for each semester as well as the overall rates, which are a) the efficiency rate defined as the ratio of the number of students passing the exam to the number of students who registered for it and b) the success rate, defined as the ratio of the number of students passing the exam to the number of students who not only registered for it but also actually took it. Additionally, we compute the rates for the bachelor academic degree which are established for Spain by the National Quality Evaluation and Accreditation Agency (ANECA) and which are the graduation rate (measured as the percentage of students who finish as scheduled in the plan or taking an extra year) and the efficiency rate (measured as the percentage of credits which a student who graduated has really taken). The simulation is done in terms of the probabilities of passing all the subjects in their study plan. The application of the simulator to Polytech students in Madrid, where requirements for passing are specially stiff in first and second year subjects, is particularly relevant to analyze student cohorts and the probabilities of students finishing in the minimum of four years, or taking and extra year or two extra years, and so forth. It is a very useful tool when designing new study plans. The calculation of the probability distribution of the random variable "number of semesters a student has taken to complete the curricula and graduate" is difficult or even unfeasible to obtain analytically, and this is even truer when we incorporate uncertainty in parameter estimation. This is why we apply Monte Carlo simulation which not only provides illustration of the stochastic process but also a method for computation. The stochastic simulator is proving to be a useful tool for identification of the subjects most critical in the distribution of the number of semesters for curriculum vitae (CV) completion and subsequently for a decision making process in terms of CV planning and passing standards in the University. Simulations are performed through a graphical interface where also the results are presented in appropriate figures. The Project has been funded by the Call for Innovation in Education Projects of Universidad Politécnica de Madrid (UPM) through a Project of its school Escuela Técnica Superior de Ingenieros Industriales ETSII during the period September 2010-September 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the response of mechanical systems to external excitations, even in the simplest cases, involves solving second-order ordinary differential equations or systems thereof. Finding the natural frequencies of a system and understanding the effect of variations of the excitation frequencies on the response of the system are essential when designing mechanisms [1] and structures [2]. However, faced with the mathematical complexity of the problem, students tend to focus on the mathematical resolution rather than on the interpretation of the results. To overcome this difficulty, once the general theoretical problem and its solution through the state space [3] have been presented, Matlab®[4] and Simulink®[5] are used to simulate specific situations. Without them, the discussion of the effect of slight variations in input variables on the outcome of the model becomes burdensome due to the excessive calculation time required. Conversely, with the help of those simulation tools, students can easily reach practical conclusions and their evaluation can be based on their interpretation of results and not on their mathematical skills

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results of the validity study of the use of MATLAB/Simulink synchronous-machine block for power-system stability studies. Firstly, the waveforms of the theoretical synchronous-generator short-circuit currents are described. Thereafter, the comparison between the currents obtained through the simulation model in the sudden short-circuit test, are compared to the theoretical ones. Finally, the factory tests of two commercial generating units are compared to the response of the synchronous generator simulation block during sudden short-circuit, set with the same real data, with satisfactory results. This results show the validity of the use of this generator block for power plant simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este proyecto se desarrolla un modelo de simulación de un accionamiento controlado que emula el comportamiento de una turbina eólica, el cual se ha llevado a cabo a través del programa para simulación Matlab/Simulink. Su desarrollo se ha estructurado de la siguiente forma: Tras una breve introducción a la energía eólica y a las máquinas eléctricas objeto de estudio en este proyecto, se procede a la caracterización y representación de dichas maquinas dentro de la plataforma de simulación virtual Simulink. Posteriormente se explican posibles estrategias de control de la máquina de inducción, las cuales son aplicadas para la realización de un control de velocidad. Asimismo, se realiza un control vectorial de par de la máquina de inducción de modo que permita un seguimiento efectivo del par de referencia demandado por el usuario, ante distintas condiciones. Finalmente, se añade el modelo de turbina eólica de manera que, definiendo los valores de velocidad de viento, ángulo de paso y velocidad del eje, permite evaluar el par mecánico desarrollado por la turbina. Este modelo se valida comprobando su funcionamiento para diferentes puntos de operación ante diversas condiciones del par de carga. Las condiciones de carga se establecen acoplando al modelo de la turbina, un generador síncrono de imanes permanentes conectado a una carga resistiva. ! II! ABSTRACT In this project, the simulation model of a controlled drive that emulates the behaviour of a wind turbine is developed. It has been carried out through the platform for multidomian simulation called Matlab/Simulink. Its development has been structured as follows: After a brief introduction to the wind energy and the electrical machines studied in this project, these machines are characterized and represented into the virtual simulation platform, Simulink. Subsequently, the possible control strategies for the induction machine are explained and applied in order to carry out a speed control. Additionally, a torque vector control of the induction machine is performed, so as to enable an effective monitoring of the reference torque requested by the user, under different conditions. Finally, the wind turbine model is implemented so as to assess the turbine mechanical torque, after defining the wind speed, the pitch angle and the shaft speed values. This model is validated by testing its functionality for different operating points under various load torques. The load conditions are set up by attaching a permanent magnets synchronous machine, with a resistive load, to the turbine model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.