19 resultados para Loop detectors.
em Universidad Politécnica de Madrid
Resumo:
In this paper, a novel and approach for obtaining 3D models from video sequences captured with hand-held cameras is addressed. We define a pipeline that robustly deals with different types of sequences and acquiring devices. Our system follows a divide and conquer approach: after a frame decimation that pre-conditions the input sequence, the video is split into short-length clips. This allows to parallelize the reconstruction step which translates into a reduction in the amount of computational resources required. The short length of the clips allows an intensive search for the best solution at each step of reconstruction which robustifies the system. The process of feature tracking is embedded within the reconstruction loop for each clip as opposed to other approaches. A final registration step, merges all the processed clips to the same coordinate frame
Resumo:
In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found
Resumo:
We have developed a new projector model specifically tailored for fast list-mode tomographic reconstructions in Positron emission tomography (PET) scanners with parallel planar detectors. The model provides an accurate estimation of the probability distribution of coincidence events defined by pairs of scintillating crystals. This distribution is parameterized with 2D elliptical Gaussian functions defined in planes perpendicular to the main axis of the tube of response (TOR). The parameters of these Gaussian functions have been obtained by fitting Monte Carlo simulations that include positron range, acolinearity of gamma rays, as well as detector attenuation and scatter effects. The proposed model has been applied efficiently to list-mode reconstruction algorithms. Evaluation with Monte Carlo simulations over a rotating high resolution PET scanner indicates that this model allows to obtain better recovery to noise ratio in OSEM (ordered-subsets, expectation-maximization) reconstruction, if compared to list-mode reconstruction with symmetric circular Gaussian TOR model, and histogram-based OSEM with precalculated system matrix using Monte Carlo simulated models and symmetries.
Resumo:
The main objective of ventilation systems in case of fire is the reduction of the possible consequences by achieving the best possible conditions for the evacuation of the users and the intervention of the emergency services. In the last years, the required quick response of the ventilation system, from normal to emergency mode, has been improved by the use of automatic and semi-automatic control systems, what reduces the response times through the support to the operators decision taking, and the use of pre-defined strategies. A further step consists on the use of closedloop algorithms, which takes into account not only the initial conditions but their development (air velocity, traffic situation, etc), optimizing the quality of the smoke control process
Resumo:
Abstract. This paper describes a new and original method for designing oscillators based on the Normalized Determinant Function (NDF) and Return Relations (RRT)- Firstly, a review of the loop-gain method will be performed. The loop-gain method pros, cons and some examples for exploring wrong solutions provided by this method will be shown. This method produces in some cases wrong solutions because some necessary conditions have not been fulfilled. The required necessary conditions to assure a right solution will be described. The necessity of using the NDF or the Transpose Return Relations (RRT), which are related with the True Loop-Gain, to test the additional conditions will be demonstrated. To conclude this paper, the steps for oscillator design and analysis, using the proposed NDF/RRj method, will be presented. The loop-gain wrong solutions will be compared with the NDF/RRj and the accuracy of this method to estimate the oscillation frequency and QL will be demonstrated. Some additional examples of plane reference oscillators (Z/Y/T), will be added and they will be analyzed with the new NDF/RRj proposed method, even these oscillators cannot be analyzed using the classic loop gain method.
Resumo:
This paper is on homonymous distributed systems where processes are prone to crash failures and have no initial knowledge of the system membership (?homonymous? means that several processes may have the same identi?er). New classes of failure detectors suited to these systems are ?rst de?ned. Among them, the classes H? and H? are introduced that are the homonymous counterparts of the classes ? and ?, respectively. (Recall that the pair h?,?i de?nes the weakest failure detector to solve consensus.) Then, the paper shows how H? and H? can be implemented in homonymous systems without membership knowledge (under different synchrony requirements). Finally, two algorithms are presented that use these failure detectors to solve consensus in homonymous asynchronous systems where there is no initial knowledge ofthe membership. One algorithm solves consensus with hH?, H?i, while the other uses only H?, but needs a majority of correct processes. Observe that the systems with unique identi?ers and anonymous systems are extreme cases of homonymous systems from which follows that all these results also apply to these systems. Interestingly, the new failure detector class H? can be implemented with partial synchrony, while the analogous class A? de?ned for anonymous systems can not be implemented (even in synchronous systems). Hence, the paper provides us with the ?rst proof showing that consensus can be solved in anonymous systems with only partial synchrony (and a majority of correct processes).
Resumo:
Functional validation of complex digital systems is a hard and critical task in the design flow. In particular, when dealing with communication systems, like Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB), the design decisions taken during the process have to be validated at different levels in an easy way. In this work, a unified algorithm-architecture-circuit co-design environment for this type of systems, to be implemented in FPGA, is presented. The main objective is to find an efficient methodology for designing a configurable optimized MB-OFDM UWB system by using as few efforts as possible in verification stage, so as to speed up the development period. Although this efficient design methodology is tested and considered to be suitable for almost all types of complex FPGA designs, we propose a solution where both the circuit and the communication channel are tested at different levels (algorithmic, RTL, hardware device) using a common testbench.
Resumo:
In this work, a unified algorithm-architecture-circuit co-design environment for complex FPGA system development is presented. The main objective is to find an efficient methodology for designing a configurable optimized FPGA system by using as few efforts as possible in verification stage, so as to speed up the development period. A proposed high performance FFT/iFFT processor for Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB) system design process is given as an example to demonstrate the proposed methodology. This efficient design methodology is tested and considered to be suitable for almost all types of complex FPGA system designs and verifications.
Resumo:
Purpose – The purpose of this paper is to introduce the design of a training tool intended to improve deminers' technique during close-in detection tasks. Design/methodology/approach – Following an introduction that highlights the impact of mines and improvised explosive devices (IEDs), and the importance of training for enhancing the safety and the efficiency of the deminers, this paper considers the utilization of a sensory tracking system to study the skill of the hand-held detector expert operators. With the compiled information, some critical performance variables can be extracted, assessed, and quantified, so that they can be used afterwards as reference values for the training task. In a second stage, the sensory tracking system is used for analysing the trainee skills. The experimentation phase aims to test the effectiveness of the elements that compose the sensory system to track the hand-held detector during the training sessions. Findings – The proposed training tool will be able to evaluate the deminers' efficiency during the scanning tasks and will provide important information for improving their competences. Originality/value – This paper highlights the need of introducing emerging technologies for enhancing the current training techniques for deminers and proposes a sensory tracking system that can be successfully utilised for evaluating trainees' performance with hand-held detectors.
Resumo:
A function based on the characteristics of the alpha-particle lines obtained with silicon semiconductor detectors and modi"ed by using cubic splines is proposed to parametrize the shape of the peaks. A reduction in the number of parameters initially considered in other proposals was carried out in order to improve the stability of the optimization process. It was imposed by the boundary conditions for the cubic splines term. This function was then able to describe peaks with highly anomalous shapes with respect to those expected from this type of detector. Some criteria were implemented to correctly determine the area of the peaks and their errors. Comparisons with other well-established functions revealed excellent agreement in the "nal values obtained from both "ts. Detailed studies on reliability of the "tting results were carried out and the application of the function is proposed. Although the aim was to correct anomalies in peak shapes, the peaks showing the expected shapes were also well "tted. Accordingly, the validity of the proposal is quite general in the analysis of alpha-particle spectrometry with semiconductor detectors.
Resumo:
Un caloducto en bucle cerrado o Loop Heat Pipe (LHP) es un dispositivo de transferencia de calor cuyo principio de operación se basa en la evaporación/condensación de un fluido de trabajo, que es bombeado a través de un circuito cerrado gracias a fuerzas de capilaridad. Gracias a su flexibilidad, su baja masa y su mínimo (incluso nulo) consumo de potencia, su principal aplicación ha sido identificada como parte del subsistema de control térmico de vehículos espaciales. En el presente trabajo se ha desarrollado un LHP capaz de funcionar eficientemente a temperaturas de hasta 125 oC, siguiendo la actual tendencia de los equipos a bordo de satélites de incrementar su temperatura de operación. En la selección del diseño optimo para dicho LHP, la compatibilidad entre materiales y fluido de trabajo se identificó como uno de los puntos clave. Para seleccionar la mejor combinación, se llevó a cabo una exhaustiva revisión del estado del arte, además de un estudio especifico que incluía el desarrollo de un banco de ensayos de compatibilidad. Como conclusión, la combinación seleccionada como la candidata idónea para ser integrada en el LHP capaz de operar hasta 125 oC fue un evaporador de acero inoxidable, líneas de titanio y amoniaco como fluido de trabajo. En esa línea se diseñó y fabricó un prototipo para ensayos y se desarrolló un modelo de simulación con EcosimPro para evaluar sus prestaciones. Se concluyó que el diseño era adecuado para el rango de operación definido. La incompatibilidad entre el fluido de trabajo y los materiales del LHP está ligada a la generación de gases no condensables. Para un estudio más detallado de los efectos de dichos gases en el funcionamiento del LHP se analizó su comportamiento con diferentes cantidades de nitrógeno inyectadas en su cámara de compensación, simulando un gas no condensable formado en el interior del dispositivo. El estudio se basó en el análisis de las temperaturas medidas experimentalmente a distintos niveles de potencia y temperatura de sumidero o fuente fría. Adicionalmente, dichos resultados se compararon con las predicciones obtenidas por medio del modelo en EcosimPro. Las principales conclusiones obtenidas fueron dos. La primera indica que una cantidad de gas no condensable más de dos veces mayor que la cantidad generada al final de la vida de un satélite típico de telecomunicaciones (15 años) tiene efectos casi despreciables en el funcionamiento del LHP. La segunda es que el principal efecto del gas no condensable es una disminución de la conductancia térmica, especialmente a bajas potencias y temperaturas de sumidero. El efecto es más significativo cuanto mayor es la cantidad de gas añadida. Asimismo, durante la campaña de ensayos se observó un fenómeno no esperado para grandes cantidades de gas no condensable. Dicho fenómeno consiste en un comportamiento oscilatorio, detectado tanto en los ensayos como en la simulación. Este efecto es susceptible de una investigación más profunda y los resultados obtenidos pueden constituir la base para dicha tarea. ABSTRACT Loop Heat Pipes (LHPs) are heat transfer devices whose operating principle is based on the evaporation/condensation of a working fluid, and which use capillary pumping forces to ensure the fluid circulation. Thanks to their flexibility, low mass and minimum (even null) power consumption, their main application has been identified as part of the thermal control subsystem in spacecraft. In the present work, an LHP able to operate efficiently up to 125 oC has been developed, which is in line with the current tendency of satellite on-board equipment to increase their operating temperatures. In selecting the optimal LHP design for the elevated temperature application, the compatibility between the materials and working fluid has been identified as one of the main drivers. An extensive literature review and a dedicated trade-off were performed, in order to select the optimal combination of fluids and materials for the LHP. The trade-off included the development of a dedicated compatibility test stand. In conclusion, the combination of stainless steel evaporator, titanium piping and ammonia as working fluid was selected as the best candidate to operate up to 125 oC. An LHP prototype was designed and manufactured and a simulation model in EcosimPro was developed to evaluate its performance. The first conclusion was that the defined LHP was suitable for the defined operational range. Incompatibility between the working fluid and LHP materials is linked to Non Condensable Gas (NCG) generation. Therefore, the behaviour of the LHP developed with different amounts of nitrogen injected in its compensation chamber to simulate NCG generation, was analyzed. The LHP performance was studied by analysis of the test results at different temperatures and power levels. The test results were also compared to simulations in EcosimPro. Two additional conclusions can be drawn: (i) the effects of an amount of more than two times the expected NCG at the end of life of a typical telecommunications satellite (15 years) is almost negligible on the LHP operation, and (ii) the main effect of the NCG is a decrease in the LHP thermal conductance, especially at low temperatures and low power levels. This decrease is more significant with the progressive addition of NCG. An unexpected phenomenon was observed in the LHP operation with large NCG amounts. Namely, an oscillatory behaviour, which was observed both in the tests and the simulation. This effect provides the basis for further studies concerning oscillations in LHPs.
Resumo:
Type 1 diabetes-mellitus implies a life-threatening absolute insulin deficiency. Artificial pancreas (CGM sensor, insulin pump and control algorithm) is promising to outperform current open-loop therapies.
Resumo:
A real-time surveillance system for IP network cameras is presented. Motion, part-body, and whole-body detectors are efficiently combined to generate robust and fast detections, which feed multiple compressive trackers. The generated trajectories are then improved using a reidentification strategy for long term operation.
Resumo:
Control of linear flow instabilities has been demonstrated to be an effective theoretical flow control methodology, capable of modifying transitional flows on canonical geometries such as the plane channel and the flat-plate boundary layer. Extending the well-developed theoretical flow control techniques to flows over or through complex geometries requires addressing the issue of efficient capturing of the leading members of the global eigenspectrum pertinent to such flows. The present contribution describes state-of-the-art modal global instability analysis methodologies recently developed in our group, based on matrix formation and time-stepping, respectively. The relative performance of these algorithms is assessed on the recovery of BiGlobal and TriGlobal eigenspectra in the spanwise periodic and the cubic lid-driven cavity, respectively; the adjoint eigenspectrum in the latter flow is recovered for the first time. For three-dimensional flows without any homogeneous spatial direction, the time-stepping methodology was found to outperform the matrix-forming approach and permit recovering the leading TriGlobal eigenmodes in an three-dimensional open cavity of aspect ratio L : D : W = 5 : 1 : 1; theoretical flow control of this configuration is underway.
Resumo:
Control of linear flow instabilities has been demonstrated to be an effective theoretical flow control methodology, capable of modifying transitional flow on canonical geometries such as the plane channel and the flat-plate boundary layer.