12 resultados para Learning with noise
em Universidad Politécnica de Madrid
Resumo:
We introduce a diffusion-based algorithm in which multiple agents cooperate to predict a common and global statevalue function by sharing local estimates and local gradient information among neighbors. Our algorithm is a fully distributed implementation of the gradient temporal difference with linear function approximation, to make it applicable to multiagent settings. Simulations illustrate the benefit of cooperation in learning, as made possible by the proposed algorithm.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.
Resumo:
El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.
Resumo:
Abstract Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Resumo:
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Resumo:
La forma de consumir contenidos en Internet ha cambiado durante los últimos años. Inicialmente se empleaban webs estáticas y con contenidos pobres visualmente. Con la evolución de las redes de comunicación, esta tendencia ha variado. A día de hoy, deseamos páginas agradables, accesibles y que nos presenten temas variados. Todo esto ha cambiado la forma de crear páginas web y en todos los casos se persigue el objetivo de atraer a los usuarios. El gran auge de los smartphones y las aplicaciones móviles que invaden el mercado actual han revolucionado el mundo del estudio de los idiomas permitiendo compatibilizar los recursos punteros con el aprendizaje tradicional. La popularidad de los dispositivos móviles y de las aplicaciones ha sido el principal motivo de la realización de este proyecto. En él se realizará un análisis de las diferentes tecnologías existentes y se elegirá la mejor opción que se ajuste a nuestras necesidades para poder desarrollar un sistema que implemente el enfoque llamado Mobile Assisted Language Learning (MALL) que supone una aproximación innovadora al aprendizaje de idiomas con la ayuda de un dispositivo móvil. En este documento se va a ofrecer una panorámica general acerca del desarrollo de aplicaciones para dispositivos móviles en el entorno del e-learning. Se estudiarán características técnicas de diferentes plataformas seleccionando la mejor opción para la implementación de un sistema que proporcione los contenidos básicos para el aprendizaje de un idioma, en este caso del inglés, de forma intuitiva y divertida. Dicho sistema permitirá al usuario mejorar su nivel de inglés mediante una interfaz web de forma dinámica y cercana empleando los recursos que ofrecen los dispositivos móviles y haciendo uso del diseño adaptativo. Este proyecto está pensado para los usuarios que dispongan de poco tiempo libre para realizar un curso de forma presencial o, mejor aún, para reforzar o repasar contenidos ya aprendidos por otros medios más tradicionales o no. La aplicación ofrece la posibilidad de que se haga uso del sistema de forma fácil y sencilla desde cualquier dispositivo móvil del que se disponga como es un smartphone, tablet o un ordenador personal, compitiendo con otros usuarios o contra uno mismo y mejorando así el nivel de partida a través de las actividades propuestas. Durante el proyecto se han comparado diversas soluciones, la mayoría de código abierto y de libre distribución que permiten desplegar servicios de almacenamiento accesibles mediante Internet. Se concluirá con un caso práctico analizando los requisitos técnicos y llevando a cabo las fases de análisis, diseño, creación de la base de datos, implementación y pruebas dentro del ciclo de vida del software. Finalmente, se migrará la aplicación con toda la información a un servidor en la nube. ABSTRACT. The way of consuming content on the Internet has changed over the past years. Initially, static websites were used with poor visual contents. Nevertheless, with the evolution of communication networks this trend has changed. Nowadays, we expect pleasant, accessible and varied topic pages and such expectations have changed the way to create web pages generally aiming at appealing and therefore, attracting users. The great boom of smartphones and mobile applications in the current market, have revolutionized the world of language learning as they make it possible to combine computing with traditional learning resources. The popularity of mobile devices and applications has been the main reason for the development of this project. Here, the different existing technologies will be examined and we will try to select the best option that adapts to our needs in order to develop a system that implements Mobile Assisted Language Learning (MALL) that in broad terms implies an approach to language learning with the help of a mobile device. This report provides an overview of the development of applications for mobile devices in the e-learning environment. We will study the technical characteristics of different platforms and we will select the best option for the implementation of a system that provide the basic content for learning a language, in this case English, by means of an intuitive and fun method. This system will allow the user to improve their level of English with a web interface in a dynamic and close way employing the resources offered by mobile devices using the adaptive design. This project is intended for users who do not have enough free time to make a classroom course or to review contents from more traditional courses as it offers the possibility to make use of the system quickly and easily from any mobile device available such as a smartphone, a tablet or a personal computer, competing with other users or against oneself and thus improving their departing level through different activities. During the project, different solutions have been compared. Most of them, open source and free distribution that allow to deploy storage services accessible via the Internet. It will conclude with a case study analyzing the technical requirements and conducting phases of analysis, design and creation of a database, implementation and testing in the software lifecycle. Finally, the application will be migrated with all the information to a server in the cloud.
Resumo:
This paper is a first step of a research about the analysis of the richness of the existing sounds in the Plaza Mayor, due to the old and traditional shops and bars under its porticoes together with the huge daily affluence of people. In this paper we study the sound preferences of the salesmen and bar tenders at those traditional shops. These sound preferences include particular sounds, time of occurrence and date of specific annoying and pleasant sounds perceived at the square and the shops surrounding it. To carry out this study, several noise level measurements and socio-acoustic surveys were held. We will also try to correlate sound preferences and annoyance with noise levels of specific events existing at this particular square.
Resumo:
A generic, sudden transition to chaos has been experimentally verified using electronic circuits. The particular system studied involves the near resonance of two coupled oscillators at 2:1 frequency ratio when the damping of the first oscillator becomes negative. We identified in the experiment all types of orbits described by theory. We also found that a theoretical, ID limit map fits closely a map of the experimental attractor which, however, could be strongly disturbed by noise. In particular, we found noisy periodic orbits, in good agreement with noise theory.
Resumo:
The water time constant and mechanical time constant greatly influences the power and speed oscillations of hydro-turbine-generator unit. This paper discusses the turbine power transients in response to different nature and changes in the gate position. The work presented here analyses the characteristics of hydraulic system with an emphasis on changes in the above time constants. The simulation study is based on mathematical first-, second-, third- and fourth-order transfer function models. The study is further extended to identify discrete time-domain models and their characteristic representation without noise and with noise content of 10 & 20 dB signal-to-noise ratio (SNR). The use of self-tuned control approach in minimising the speed deviation under plant parameter changes and disturbances is also discussed.
Proyectar con el delirio. Del Método Crítico Paranoico al gueto de Varsovia a través de Coney Island
Resumo:
RESUMEN. A partir de las diferentes definiciones entre “caer” o “estar” en la paranoia y los conceptos que se le relacionan, esta investigación descubre las diferentes herramientas proyectuales que permiten utilizar la arquitectura como medio para conducir a la sociedad al error, al delirio. Asumiendo que hoy en día el modo en el que se percibe la realidad es consecuencia de un proceso de moldeamiento psíquico, se realiza un proceso retroactivo en Coney Island (1900) y el Gueto de Varsovia (1940) para estudiar, confrontar y poner en duda los distintos formas de aprendizaje con los que actualmente se proyecta. Se pretende, tomando conciencia de lo anterior, plantear las bases de un nuevo método proyectual que sabiendo que es delirante juega con su funcionamiento paranoico. ABSTRACT. From the different definitions between "fall" or "to be" in the paranoia and its related concepts, this research finds out different tools which uses Architecture as a means to lead society to failure, delirium. Assuming that today the way reality is perceived is the result of a mental shaping process,a retrospective process in Coney Island (1900) and the Warsaw Ghetto (1940) is done in order to explore, confront and question various forms of learning with are currently used to design in architecture. It is intended, becoming aware of the above, to lay the groundwork for a new methodological approach in conception that knowing it is delirious, plays with its paranoid functioning.
Resumo:
El objetivo principal que este trabajo ha perseguido tiene que ver, primero, con reconocer la arquitectura como una disciplina intensamente ligada con la realidad (espacial, constructiva, económica) para después reivindicar una docencia de la misma que busque trabar lazos más estrechos con la experiencia directa del aprendizaje. A lo largo de la primera parte del trabajo se proponer un enfoque que identifica como próximas las bases del llamado “aprendizaje experimental” con la forma de pensar que trata de transmitirse respecto al concepto de “proyectar” en nuestras escuelas. Acordada esta relación de proximidad entre el aprendizaje experimental y el aprendizaje de proyectos se da un paso más allá: la bibliografía propia de las ciencias del aprendizaje señala los rasgos que caracterizan a los espacios donde tiene lugar este aprendizaje experimental. Esta información se ha confrontado con seis ejemplos en el panorama contemporáneo de las escuelas de arquitectura que, pensábamos, podían responder a la definición de “espacios de aprendizaje experimental”. Una vez descritos se ha hecho una lectura crítica de cada uno respecto a las características descritas por las ciencias del aprendizaje. Como resultado de estas lecturas críticas podemos concluir una serie de puntos que pueden caracterizar al espacio de aprendizaje experimental en la escuela de arquitectura de cara al futuro. The main objective that this work has pursued was, first, to recognize architecture as a discipline strongly linked with reality (spatial, constructive, economic) and then claim a teaching of it to seek closer ties lock experience direct learning. Throughout the first part of the paper is to propose an approach that identifies it as coming bases called “experiential learning” with the way of thinking that is transmitted on the concept of “project” in our schools. Agreed this close relationship between experiential learning and project learning goes a step further: the bibliography own learning sciences highlights the features that characterize the spaces where this experiential learning occurs. This information has been confronted with six examples in contemporary landscape architecture schools, we thought, could fall within the definition of “experimental learning spaces”. Having described has become a critical reading of each with respect to the characteristics described by the learning sciences. As a result of these critical readings can conclude a number of points that can characterize the space of experiential learning in the school of architecture facing the future.