4 resultados para Laplace-Metropolis estimator
em Universidad Politécnica de Madrid
Resumo:
All meta-analyses should include a heterogeneity analysis. Even so, it is not easy to decide whether a set of studies are homogeneous or heterogeneous because of the low statistical power of the statistics used (usually the Q test). Objective: Determine a set of rules enabling SE researchers to find out, based on the characteristics of the experiments to be aggregated, whether or not it is feasible to accurately detect heterogeneity. Method: Evaluate the statistical power of heterogeneity detection methods using a Monte Carlo simulation process. Results: The Q test is not powerful when the meta-analysis contains up to a total of about 200 experimental subjects and the effect size difference is less than 1. Conclusions: The Q test cannot be used as a decision-making criterion for meta-analysis in small sample settings like SE. Random effects models should be used instead of fixed effects models. Caution should be exercised when applying Q test-mediated decomposition into subgroups.
Resumo:
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.
Resumo:
Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.
Resumo:
Adaptive Rejection Metropolis Sampling (ARMS) is a wellknown MCMC scheme for generating samples from onedimensional target distributions. ARMS is widely used within Gibbs sampling, where automatic and fast samplers are often needed to draw from univariate full-conditional densities. In this work, we propose an alternative adaptive algorithm (IA2RMS) that overcomes the main drawback of ARMS (an uncomplete adaptation of the proposal in some cases), speeding up the convergence of the chain to the target. Numerical results show that IA2RMS outperforms the standard ARMS, providing a correlation among samples close to zero.