15 resultados para Language Models
em Universidad Politécnica de Madrid
Resumo:
We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.
Resumo:
We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.
Resumo:
We present an approach to adapt dynamically the language models (LMs) used by a speech recognizer that is part of a spoken dialogue system. We have developed a grammar generation strategy that automatically adapts the LMs using the semantic information that the user provides (represented as dialogue concepts), together with the information regarding the intentions of the speaker (inferred by the dialogue manager, and represented as dialogue goals). We carry out the adaptation as a linear interpolation between a background LM, and one or more of the LMs associated to the dialogue elements (concepts or goals) addressed by the user. The interpolation weights between those models are automatically estimated on each dialogue turn, using measures such as the posterior probabilities of concepts and goals, estimated as part of the inference procedure to determine the actions to be carried out. We propose two approaches to handle the LMs related to concepts and goals. Whereas in the first one we estimate a LM for each one of them, in the second one we apply several clustering strategies to group together those elements that share some common properties, and estimate a LM for each cluster. Our evaluation shows how the system can estimate a dynamic model adapted to each dialogue turn, which helps to improve the performance of the speech recognition (up to a 14.82% of relative improvement), which leads to an improvement in both the language understanding and the dialogue management tasks.
Resumo:
This paper presents a dynamic LM adaptation based on the topic that has been identified on a speech segment. We use LSA and the given topic labels in the training dataset to obtain and use the topic models. We propose a dynamic language model adaptation to improve the recognition performance in "a two stages" AST system. The final stage makes use of the topic identification with two variants: the first on uses just the most probable topic and the other one depends on the relative distances of the topics that have been identified. We perform the adaptation of the LM as a linear interpolation between a background model and topic-based LM. The interpolation weight id dynamically adapted according to different parameters. The proposed method is evaluated on the Spanish partition of the EPPS speech database. We achieved a relative reduction in WER of 11.13% over the baseline system which uses a single blackground LM.
Resumo:
In this paper, we describe new results and improvements to a lan-guage identification (LID) system based on PPRLM previously introduced in [1] and [2]. In this case, we use as parallel phone recognizers the ones provided by the Brno University of Technology for Czech, Hungarian, and Russian lan-guages, and instead of using traditional n-gram language models we use a lan-guage model that is created using a ranking with the most frequent and discrim-inative n-grams. In this language model approach, the distance between the ranking for the input sentence and the ranking for each language is computed, based on the difference in relative positions for each n-gram. This approach is able to model reliably longer span information than in traditional language models obtaining more reliable estimations. We also describe the modifications that we have being introducing along the time to the original ranking technique, e.g., different discriminative formulas to establish the ranking, variations of the template size, the suppression of repeated consecutive phones, and a new clus-tering technique for the ranking scores. Results show that this technique pro-vides a 12.9% relative improvement over PPRLM. Finally, we also describe re-sults where the traditional PPRLM and our ranking technique are combined.
Resumo:
This paper describes the GTH-UPM system for the Albayzin 2014 Search on Speech Evaluation. Teh evaluation task consists of searching a list of terms/queries in audio files. The GTH-UPM system we are presenting is based on a LVCSR (Large Vocabulary Continuous Speech Recognition) system. We have used MAVIR corpus and the Spanish partition of the EPPS (European Parliament Plenary Sessions) database for training both acoustic and language models. The main effort has been focused on lexicon preparation and text selection for the language model construction. The system makes use of different lexicon and language models depending on the task that is performed. For the best configuration of the system on the development set, we have obtained a FOM of 75.27 for the deyword spotting task.
Resumo:
La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.
Análisis de las herramientas ORCC y Vivado HLS para la Síntesis de Modelos de Flujo de Datos RVC-CAL
Resumo:
En este Proyecto Fin de Grado se ha realizado un estudio de cómo generar, a partir de modelos de flujo de datos en RVC-CAL (Reconfigurable Video Coding – CAL Actor Language), modelos VHDL (Versatile Hardware Description Language) mediante Vivado HLS (Vivado High Level Synthesis), incluida en las herramientas disponibles en Vivado de Xilinx. Una vez conseguido el modelo VHDL resultante, la intención es que mediante las herramientas de Xilinx se programe en una FPGA (Field Programmable Gate Array) o el dispositivo Zynq también desarrollado por Xilinx. RVC-CAL es un lenguaje de flujo de datos que describe la funcionalidad de bloques funcionales, denominados actores. Las funcionalidades que desarrolla un actor se definen como acciones, las cuales pueden ser diferentes en un mismo actor. Los actores pueden comunicarse entre sí y formar una red de actores o network. Con Vivado HLS podemos obtener un diseño VHDL a partir de un modelo en lenguaje C. Por lo que la generación de modelos en VHDL a partir de otros en RVC-CAL, requiere una fase previa en la que los modelos en RVC-CAL serán compilados para conseguir su equivalente en lenguaje C. El compilador ORCC (Open RVC-CAL Compiler) es la herramienta que nos permite lograr diseños en lenguaje C partiendo de modelos en RVC-CAL. ORCC no crea directamente el código ejecutable, sino que genera un código fuente disponible para ser compilado por otra herramienta, en el caso de este proyecto, el compilador GCC (Gnu C Compiler) de Linux. En resumen en este proyecto nos encontramos con tres puntos de estudio bien diferenciados, los cuales son: 1. Partimos de modelos de flujo de datos en RVC-CAL, los cuales son compilados por ORCC para alcanzar su traducción en lenguaje C. 2. Una vez conseguidos los diseños equivalentes en lenguaje C, son sintetizados en Vivado HLS para conseguir los modelos en VHDL. 3. Los modelos VHDL resultantes serian manipulados por las herramientas de Xilinx para producir el bitstream que sea programado en una FPGA o en el dispositivo Zynq. En el estudio del segundo punto, nos encontramos con una serie de elementos conflictivos que afectan a la síntesis en Vivado HLS de los diseños en lenguaje C generados por ORCC. Estos elementos están relacionados con la manera que se encuentra estructurada la especificación en C generada por ORCC y que Vivado HLS no puede soportar en determinados momentos de la síntesis. De esta manera se ha propuesto una transformación “manual” de los diseños generados por ORCC que afecto lo menos posible a los modelos originales para poder realizar la síntesis con Vivado HLS y crear el fichero VHDL correcto. De esta forma este documento se estructura siguiendo el modelo de un trabajo de investigación. En primer lugar, se exponen las motivaciones y objetivos que apoyan y se esperan lograr en este trabajo. Seguidamente, se pone de manifiesto un análisis del estado del arte de los elementos necesarios para el desarrollo del mismo, proporcionando los conceptos básicos para la correcta comprensión y estudio del documento. Se realiza una descripción de los lenguajes RVC-CAL y VHDL, además de una introducción de las herramientas ORCC y Vivado, analizando las bondades y características principales de ambas. Una vez conocido el comportamiento de ambas herramientas, se describen las soluciones desarrolladas en nuestro estudio de la síntesis de modelos en RVC-CAL, poniéndose de manifiesto los puntos conflictivos anteriormente señalados que Vivado HLS no puede soportar en la síntesis de los diseños en lenguaje C generados por el compilador ORCC. A continuación se presentan las soluciones propuestas a estos errores acontecidos durante la síntesis, con las cuales se pretende alcanzar una especificación en C más óptima para una correcta síntesis en Vivado HLS y alcanzar de esta forma los modelos VHDL adecuados. Por último, como resultado final de este trabajo se extraen un conjunto de conclusiones sobre todos los análisis y desarrollos acontecidos en el mismo. Al mismo tiempo se proponen una serie de líneas futuras de trabajo con las que se podría continuar el estudio y completar la investigación desarrollada en este documento. ABSTRACT. In this Project it has made a study of how to generate, from data flow models in RVC-CAL (Reconfigurable Video Coding - Actor CAL Language), VHDL models (Versatile Hardware Description Language) by Vivado HLS (Vivado High Level Synthesis), included in the tools available in Vivado of Xilinx. Once achieved the resulting VHDL model, the intention is that by the Xilinx tools programmed in FPGA or Zynq device also developed by Xilinx. RVC-CAL is a dataflow language that describes the functionality of functional blocks, called actors. The functionalities developed by an actor are defined as actions, which may be different in the same actor. Actors can communicate with each other and form a network of actors. With Vivado HLS we can get a VHDL design from a model in C. So the generation of models in VHDL from others in RVC-CAL requires a preliminary phase in which the models RVC-CAL will be compiled to get its equivalent in C. The compiler ORCC (Open RVC-CAL Compiler) is the tool that allows us to achieve designs in C language models based on RVC-CAL. ORCC not directly create the executable code but generates an available source code to be compiled by another tool, in the case of this project, the GCC compiler (GNU C Compiler) of Linux. In short, in this project we find three well-defined points of study, which are: 1. We start from data flow models in RVC-CAL, which are compiled by ORCC to achieve its translation in C. 2. Once you realize the equivalent designs in C, they are synthesized in Vivado HLS for VHDL models. 3. The resulting models VHDL would be manipulated by Xilinx tools to produce the bitstream that is programmed into an FPGA or Zynq device. In the study of the second point, we find a number of conflicting elements that affect the synthesis Vivado HLS designs in C generated by ORCC. These elements are related to the way it is structured specification in C generated ORCC and Vivado HLS cannot hold at certain times of the synthesis. Thus it has proposed a "manual" transformation of designs generated by ORCC that affected as little as possible to the original in order to perform the synthesis Vivado HLS and create the correct file VHDL models. Thus this document is structured along the lines of a research. First, the motivations and objectives that support and hope to reach in this work are presented. Then it shows an analysis the state of the art of the elements necessary for its development, providing the basics for a correct understanding and study of the document. A description of the RVC-CAL and VHDL languages is made, in addition an introduction of the ORCC and Vivado tools, analyzing the advantages and main features of both. Once you know the behavior of both tools, the solutions developed in our study of the synthesis of RVC-CAL models, introducing the conflicting points mentioned above are described that Vivado HLS cannot stand in the synthesis of design in C language generated by ORCC compiler. Below the proposed solutions to these errors occurred during synthesis, with which it is intended to achieve optimum C specification for proper synthesis Vivado HLS and thus create the appropriate VHDL models are presented. Finally, as the end result of this work a set of conclusions on all analyzes and developments occurred in the same are removed. At the same time a series of future lines of work which could continue to study and complete the research developed in this document are proposed.
Resumo:
This paper proposes the use of Factored Translation Models (FTMs) for improving a Speech into Sign Language Translation System. These FTMs allow incorporating syntactic-semantic information during the translation process. This new information permits to reduce significantly the translation error rate. This paper also analyses different alternatives for dealing with the non-relevant words. The speech into sign language translation system has been developed and evaluated in a specific application domain: the renewal of Identity Documents and Driver’s License. The translation system uses a phrase-based translation system (Moses). The evaluation results reveal that the BLEU (BiLingual Evaluation Understudy) has improved from 69.1% to 73.9% and the mSER (multiple references Sign Error Rate) has been reduced from 30.6% to 24.8%.
Resumo:
This paper describes a proposal of a language called Link which has been designed to formalize and operationalize problem solving strategies. This language is used within a software environment called KSM (Knowledge Structure Manager) which helps developers in formulating and operationalizing structured knowledge models. The paper presents both its syntax and dynamics, and gives examples of well-known problem-solving strategies of reasoning formulated using this language.
Resumo:
The modelling of critical infrastructures (CIs) is an important issue that needs to be properly addressed, for several reasons. It is a basic support for making decisions about operation and risk reduction. It might help in understanding high-level states at the system-of-systems layer, which are not ready evident to the organisations that manage the lower level technical systems. Moreover, it is also indispensable for setting a common reference between operator and authorities, for agreeing on the incident scenarios that might affect those infrastructures. So far, critical infrastructures have been modelled ad-hoc, on the basis of knowledge and practice derived from less complex systems. As there is no theoretical framework, most of these efforts proceed without clear guides and goals and using informally defined schemas based mostly on boxes and arrows. Different CIs (electricity grid, telecommunications networks, emergency support, etc) have been modelled using particular schemas that were not directly translatable from one CI to another. If there is a desire to build a science of CIs it is because there are some observable commonalities that different CIs share. Up until now, however, those commonalities were not adequately compiled or categorized, so building models of CIs that are rooted on such commonalities was not possible. This report explores the issue of which elements underlie every CI and how those elements can be used to develop a modelling language that will enable CI modelling and, subsequently, analysis of CI interactions, with a special focus on resilience
Resumo:
We present a method for the static resource usage analysis of MiniZinc models. The analysis can infer upper bounds on the usage that a MiniZinc model will make of some resources such as the number of constraints of a given type (equality, disequality, global constraints, etc.), the number of variables (search variables or temporary variables), or the size of the expressions before calling the solver. These bounds are obtained from the models independently of the concrete input data (the instance data) and are in general functions of sizes of such data. In our approach, MiniZinc models are translated into Ciao programs which are then analysed by the CiaoPP system. CiaoPP includes a parametric analysis framework for resource usage in which the user can define resources and express the resource usage of library procedures (and certain program construets) by means of a language of assertions. We present the approach and report on a preliminary implementation, which shows the feasibility of the approach, and provides encouraging results.
Resumo:
We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system.
Resumo:
Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs) requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge representation language like F-logic in order to support process-related reasoning. The main results of this work include a formalism for process representation and a mechanism for automatically translating process diagrams into executable code following such formalism. From all the process models authored by SMEs during evaluation 82% were well-formed, all of which executed correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at reasoning time of 25% and 30% with respect to the base case, respectively.
Resumo:
This paper presents new techniques with relevant improvements added to the primary system presented by our group to the Albayzin 2012 LRE competition, where the use of any additional corpora for training or optimizing the models was forbidden. In this work, we present the incorporation of an additional phonotactic subsystem based on the use of phone log-likelihood ratio features (PLLR) extracted from different phonotactic recognizers that contributes to improve the accuracy of the system in a 21.4% in terms of Cavg (we also present results for the official metric during the evaluation, Fact). We will present how using these features at the phone state level provides significant improvements, when used together with dimensionality reduction techniques, especially PCA. We have also experimented with applying alternative SDC-like configurations on these PLLR features with additional improvements. Also, we will describe some modifications to the MFCC-based acoustic i-vector system which have also contributed to additional improvements. The final fused system outperformed the baseline in 27.4% in Cavg.