9 resultados para LOGISTIC REGRESSION WITH STATE-DEPENDENT SAMPLE SELECTION
em Universidad Politécnica de Madrid
Resumo:
This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
Predicting failures in a distributed system based on previous events through logistic regression is a standard approach in literature. This technique is not reliable, though, in two situations: in the prediction of rare events, which do not appear in enough proportion for the algorithm to capture, and in environments where there are too many variables, as logistic regression tends to overfit on this situations; while manually selecting a subset of variables to create the model is error- prone. On this paper, we solve an industrial research case that presented this situation with a combination of elastic net logistic regression, a method that allows us to automatically select useful variables, a process of cross-validation on top of it and the application of a rare events prediction technique to reduce computation time. This process provides two layers of cross- validation that automatically obtain the optimal model complexity and the optimal mode l parameters values, while ensuring even rare events will be correctly predicted with a low amount of training instances. We tested this method against real industrial data, obtaining a total of 60 out of 80 possible models with a 90% average model accuracy.
Resumo:
Liquid-fueled burners are used in a number of propulsion devices ranging from internal combustion engines to gas turbines. The structure of spray flames is quite complex and involves a wide range of time and spatial scales in both premixed and non-premixed modes (Williams 1965; Luo et al. 2011). A number of spray-combustion regimes can be observed experimentally in canonical scenarios of practical relevance such as counterflow diffusion flames (Li 1997), as sketched in figure 1, and for which different microscalemodelling strategies are needed. In this study, source terms for the conservation equations are calculated for heating, vaporizing and burning sprays in the single-droplet combustion regime. The present analysis provides extended formulation for source terms, which include non-unity Lewis numbers and variable thermal conductivities.
Resumo:
El sector ganadero está siendo gradualmente dominado por sistemas intensivos y especializados en los que los factores de producción están controlados y en los que los caracteres productivos son los criterios principales para la selección de especies y razas. Entretanto, muchos de los bienes y servicios que tradicionalmente suministraba el ganado, tales como los fertilizantes, la tracción animal o materias primas para la elaboración vestimenta y calzado están siendo reemplazados por productos industriales. Como consecuencia de ambos cambios, las razas seleccionadas intensivamente, las cuales están estrechamente ligadas a sistemas agrícolas de alta producción y altos insumos, han desplazado a muchas razas autóctonas, en las que la selección prácticamente ha cesado o es muy poco intensa. Actualmente existe una mayor conciencia social sobre la situación de las razas autóctonas y muchas funciones del ganado que previamente habían sido ignoradas están siendo reconocidas. Desde hace algunas décadas, se ha aceptado internacionalmente que las razas de ganado cumplen funciones económicas, socio-culturales, medioambientales y de seguridad alimentaria. Por ello, diferentes organismos internacionales han reconocido que la disminución de los recursos genéticos de animales domésticos (RGADs) es un problema grave y han recomendado su conservación. Aun así, la conservación de RGADs es un tema controvertido por la dificultad de valorar las funciones del ganado. Esta valoración es compleja debido que los RGADs tiene una doble naturaleza privada - pública. Como algunos economistas han subrayado, el ganado es un bien privado, sin embargo debido a algunas de sus funciones, también es un bien público. De esta forma, el aumento del conocimiento sobre valor de cada una de sus funciones facilitaría la toma de decisiones en relación a su conservación y desarrollo. Sin embargo, esta valoración es controvertida puesto que la importancia relativa de las funciones del ganado varía en función del momento, del lugar, de las especies y de las razas. El sector ganadero, debido a sus múltiples funciones, está influenciado por factores técnicos, medioambientales, sociales, culturales y políticos que están interrelacionados y que engloban a una enorme variedad de actores y procesos. Al igual que las funciones del ganado, los factores que afectan a su conservación y desarrollo están fuertemente condicionados por localización geográfica. Asimismo, estos factores pueden ser muy heterogéneos incluso dentro de una misma raza. Por otro lado, es razonable pensar que el ganadero es el actor principal de la conservación de razas locales. Actualmente, las razas locales están siendo Integration of socioeconomic and genetic aspects involved in the conservation of animal genetic resources 5 explotadas por ganaderos muy diversos bajo sistemas de producción también muy diferentes. Por todo ello, es de vital importancia comprender y evaluar el impacto que tienen las motivaciones, y el proceso de toma de decisiones de los ganaderos en la estructura genética de las razas. En esta tesis doctoral exploramos diferentes aspectos sociales, económicos y genéticos involucrados en la conservación de razas locales de ganado vacuno en Europa, como ejemplo de RGADs, esperando contribuir al entendimiento científico de este complejo tema. Nuestro objetivo es conseguir una visión global de los procesos subyacentes en la conservación y desarrollo de estas razas. Pretendemos ilustrar como se pueden utilizar métodos cuantitativos en el diseño y establecimiento de estrategias de conservación y desarrollo de RGADs objetivas y adecuadas. En primer lugar, exploramos el valor económico total (VET) del ganado analizando sus componentes públicos fuera de mercado usando como caso de estudio la raza vacuna Alistana-Sanabresa (AS). El VET de cualquier bien está formado por componentes de uso y de no-uso. Estos últimos incluyen el valor de opción, el valor de herencia y el valor de existencia. En el caso del ganado local, el valor de uso directo proviene de sus productos. Los valores de uso indirecto están relacionados con el papel que cumple las razas en el mantenimiento de los paisajes y cultura rural. El valor de opción se refiere a su futuro uso potencial y el valor de herencia al uso potencial de las generaciones venideras. Finalmente, el valor de existencia está relacionado con el bienestar que produce a la gente saber que existe un recurso específico. Nuestro objetivo fue determinar la importancia relativa que tienen los componentes fuera de mercado sobre el VET de la raza AS. Para ello evaluamos la voluntad de la gente a pagar por la conservación de la AS mediante experimentos de elección (EEs) a través de encuestas. Estos experimentos permiten valorar individualmente los distintos componentes del VET de cualquier bien. Los resultados los analizamos mediante de uso de modelos aleatorios logit. Encontramos que las funciones públicas de la raza AS tienen un valor significativo. Sus valores más importantes son el valor de uso indirecto como elemento cultural Zamorano y el valor de existencia (ambos representaron el 80% de VET). Además observamos que el valor que gente da a las funciones públicas de la razas de ganado dependen de sus características socioeconómicas. Los factores que condicionaron la voluntad a pagar para la conservación de la raza AS fueron el lugar de residencia (ciudad o pueblo), el haber visto animales de la raza o haber consumido sus productos y la actitud de los encuestados ante los conflictos entre el desarrollo económico y el medioambiente. Por otro lado, encontramos que no todo el mundo tiene una visión completa e integrada de todas las funciones públicas de la raza AS. Por este motivo, los programas o actividades de concienciación sobre su estado deberían hacer hincapié en este aspecto. La existencia de valores públicos de la raza AS implica que los ganaderos deberían recibir compensaciones económicas como pago por las funciones públicas que cumple su raza local. Las compensaciones asegurarían un tamaño de población que permitiría que la raza AS siga realizando estas funciones. Un mecanismo para ello podría ser el desarrollo del turismo rural relacionado con la raza. Esto aumentaría el valor de uso privado mientras que supondría un elemento añadido a las estrategias de conservación y desarrollo. No obstante, los ganaderos deben analizar cómo aprovechar los nichos de mercado existentes, así como mejorar la calidad de los productos de la raza prestando especial atención al etiquetado de los mismos. Una vez evaluada la importancia de las funciones públicas de las razas locales de ganado, analizamos la diversidad de factores técnicos, económicos y sociales de la producción de razas locales de ganado vacuno existente en Europa. Con este fin analizamos el caso de quince razas locales de ocho países en el contexto de un proyecto de colaboración internacional. Investigamos las diferencias entre los países para determinar los factores comunes clave que afectan a la viabilidad de las razas locales. Para ello entrevistamos mediante cuestionarios a un total de 355 ganaderos en las quince razas. Como indicador de viabilidad usamos los planes de los ganaderos de variación del tamaño de las ganaderías. Los cuestionarios incluían diferentes aspectos económicos, técnicos y sociales con potencial influencia en las dinámicas demográficas de las razas locales. Los datos recogidos los analizamos mediante distintas técnicas estadísticas multivariantes como el análisis discriminante y la regresión logística. Encontramos que los factores que afectan a la viabilidad de las razas locales en Europa son muy heterogéneos. Un resultado reseñable fue que los ganaderos de algunos países no consideran que la explotación de su raza tenga un alto valor social. Este hecho vuelve a poner de manifiesto la importancia de desarrollar programas Europeos de concienciación sobre la importancia de las funciones que cumplen las razas locales. Además los países analizados presentaron una alta variabilidad en cuanto a la importancia de los mercados locales en la distribución de los productos y en cuanto al porcentaje en propiedad del total de los pastos usados en las explotaciones. Este estudio reflejó la variabilidad de los sistemas y medios de producción (en el sentido socioeconómico, técnico y ecológico) que existe en Europa. Por ello hay que ser cautos en la implementación de las políticas comunes en los diferentes países. También encontramos que la variabilidad dentro de los países puede ser elevada debido a las diferencias entre razas, lo que implica que las políticas nacionales deber ser suficientemente flexibles para adaptarse a las peculiaridades de cada una de las razas. Por otro lado, encontramos una serie de factores comunes a la viabilidad de las razas en los distintos países; la edad de los ganaderos, la colaboración entre ellos y la apreciación social de las funciones culturales, medioambientales y sociales del ganado local. El envejecimiento de los ganaderos de razas locales no es solo un problema de falta de transferencia generacional, sino que también puede suponer una actitud más negativa hacia la inversión en las actividades ganaderas y en una menor capacidad de adaptación a los cambios del sector. La capacidad de adaptación de los ganaderos es un factor crucial en la viabilidad de las razas locales. Las estrategias y políticas de conservación comunes deben incluir las variables comunes a la viabilidad de las razas manteniendo flexibilidad suficiente para adaptarse a las especificidades nacionales. Estas estrategias y políticas deberían ir más allá de compensación económica a los ganaderos de razas locales por la menor productividad de sus razas. Las herramientas para la toma de decisiones ayudan a generar una visión amplia de la conservación y desarrollo de las razas locales. Estas herramientas abordan el diseño de estrategias de conservación y desarrollo de forma sistemática y estructurada. En la tercera parte de la tesis usamos una de estas herramientas, el análisis DAFO (Debilidades, Amenazas, Fortalezas y Oportunidades), con este propósito, reconociendo que la conservación de RGADs depende de los ganaderos. Desarrollamos un análisis DAFO cuantitativo y lo aplicamos a trece razas locales de ganado vacuno de seis países europeos en el contexto del proyecto de colaboración mencionado anteriormente. El método tiene cuatro pasos: 1) la definición del sistema; 2) la identificación y agrupación de los factores influyentes; 3) la cuantificación de la importancia de dichos factores y 4) la identificación y priorización de estrategias. Identificamos los factores utilizando multitud de agentes (multi-stakeholder appproach). Una vez determinados los factores se agruparon en una estructura de tres niveles. La importancia relativa de los cada uno de los factores para cada raza fue determinada por grupos de expertos en RGADs de los países integrados en el citado proyecto. Finalmente, desarrollamos un proceso de cuantificación para identificar y priorizar estrategias. La estructura de agrupación de factores permitió analizar el problema de la conservación desde el nivel general hasta el concreto. La unión de análisis específicos de cada una de las razas en un análisis DAFO común permitió evaluar la adecuación de las estrategias a cada caso concreto. Identificamos un total de 99 factores. El análisis reveló que mientras los factores menos importantes son muy consistentes entre razas, los factores y estrategias más relevantes son muy heterogéneos. La idoneidad de las estrategias fue mayor a medida que estas se hacían más generales. A pesar de dicha heterogeneidad, los factores influyentes y estrategias más importantes estaban ligados a aspectos positivos (fortalezas y oportunidades) lo que implica que el futuro de estas razas es prometedor. Los resultados de nuestro análisis también confirmaron la gran relevancia del valor cultural de estas razas. Las factores internos (fortalezas y debilidades) más importantes estaban relacionadas con los sistemas de producción y los ganaderos. Las oportunidades más relevantes estaban relacionadas con el desarrollo y marketing de nuevos productos mientras que las amenazas más importantes se encontraron a la hora de vender los productos actuales. Este resultado implica que sería fructífero trabajar en la motivación y colaboración entre ganaderos así como, en la mejora de sus capacidades. Concluimos que las políticas comunes europeas deberían centrarse en aspectos generales y ser los suficientemente flexibles para adaptarse a las singularidades de los países y las razas. Como ya se ha mencionado, los ganaderos juegan un papel esencial en la conservación y desarrollo de las razas autóctonas. Por ello es relevante entender que implicación puede tener la heterogeneidad de los mismos en la viabilidad de una raza. En la cuarta parte de la tesis hemos identificado tipos de ganaderos con el fin de entender cómo la relación entre la variabilidad de sus características socioeconómicas, los perfiles de las ganaderías y las dinámicas de las mismas. El análisis se ha realizado en un contexto sociológico, aplicando los conceptos de capital cultural y económico. Las tipologías se han determinado en función de factores socioeconómicos y culturales indicadores del capital cultural y capital económico de un individuo. Nuestro objetivo era estudiar si la tipología socioeconómica de los ganaderos afecta al perfil de su ganadería y a las decisiones que toman. Entrevistamos a 85 ganaderos de la raza Avileña-Negra Ibérica (ANI) y utilizamos los resultados de dichas entrevistas para ilustrar y testar el proceso. Definimos los tipos de ganaderos utilizando un análisis de clúster jerarquizado con un grupo de variables canónicas que se obtuvieron en función de cinco factores socioeconómicos: el nivel de educación del ganadero, el año en que empezó a ser ganadero de ANI, el porcentaje de los ingresos familiares que aporta la ganadería, el porcentaje de propiedad de la tierra de la explotación y la edad del ganadero. La tipología de los ganaderos de ANI resultó ser más compleja que en el pasado. Los resultados indicaron que los tipos de ganaderos variaban en muchos aspectos socioeconómicos y en los perfiles de sus Integration of socioeconomic and genetic aspects involved in the conservation of animal genetic resources 9 ganaderías. Los tipos de ganaderos determinados toman diferentes decisiones en relación a la modificación del tamaño de su ganadería y a sus objetivos de selección. Por otro lado, reaccionaron de forma diferente ante un hipotético escenario de reducción de las compensaciones económicas que les planteamos. En este estudio hemos visto que el capital cultural y el económico interactúan y hemos explicado como lo hacen en los distintos tipos de ganaderos. Por ejemplo, los ganaderos que poseían un mayor capital económico, capital cultural formal y capital cultural adquirido sobre la raza, eran los ganaderos cuyos animales tenían una mayor demanda por parte de otros ganaderos, lo cual podría responder a su mayor prestigio social dentro de la raza. Uno de los elementos claves para el futuro de la raza es si este prestigio responde a una superioridad genética de las animales. Esto ocurriría si los ganaderos utilizaran las herramientas que tienen a su disposición a la hora de seleccionar animales. Los tipos de ganaderos identificados mostraron también claras diferencias en sus formas de colaboración y en su reacción a una hipotética variación de las compensaciones económicas. Aunque algunos tipos de ganaderos mostraron un bajo nivel de dependencia a estas compensaciones, la mayoría se manifestaron altamente dependientes. Por ello cualquier cambio drástico en la política de ayudas puede comprometer el desarrollo de las razas autóctonas. La adaptación las políticas de compensaciones económicas a la heterogeneidad de los ganaderos podría aumentar la eficacia de las mismas por lo que sería interesante explorar posibilidades a este respecto. Concluimos destacando la necesidad de desarrollar políticas que tengan en cuenta la heterogeneidad de los ganaderos. Finalmente abordamos el estudio de la estructura genética de poblaciones ganaderas. Las decisiones de los ganaderos en relación a la selección de sementales y su número de descendientes configuran la estructura demográfica y genética de las razas. En la actualidad existe un interés renovado por estudiar las estructuras poblacionales debido a la influencia potencial de su estratificación sobre la predicción de valores genómicos y/o los análisis de asociación a genoma completo. Utilizamos dos métodos distintos, un algoritmo de clústeres basados en teoría de grafos (GCA) y un algoritmo de clustering bayesiano (STRUCTURE) para estudiar la estructura genética de la raza ANI. Prestamos especial atención al efecto de la presencia de parientes cercanos en la población y de la diferenciación genética entre subpoblaciones sobre el análisis de la estructura de la población. En primer lugar evaluamos el comportamiento de los dos algoritmos en poblaciones simuladas para posteriormente analizar los genotipos para 17 microsatélites de 13343 animales de 57 ganaderías distintas de raza ANI. La ANI es un ejemplo de raza con relaciones complejas. Por otro lado, utilizamos el archivo de pedigrí de la raza para estudiar el flujo de genes, calculando, entre otras cosas, la contribución de cada ganadería a la constitución genética de la raza. En el caso de las poblaciones simuladas, cuando el FST entre subpoblaciones fue suficientemente alto, ambos algoritmos, GCA y STRUCTURE, identificaron la misma estructura genética independientemente de que existieran o no relaciones familiares. Por el contrario, cuando el grado de diferenciación entre poblaciones fue bajo, el STRUCTURE identificó la estructura familiar mientras que GCA no permitió obtener ningún resultado concluyente. El GCA resultó ser un algoritmo más rápido y eficiente para de inferir la estructura genética en poblaciones con relaciones complejas. Este algoritmo también puede ser usado para reducir el número de clústeres a testar con el STRUTURE. En cuanto al análisis de la población de ANI, ambos algoritmos describieron la misma estructura, lo cual sugiere que los resultados son robustos. Se identificaron tres subpoblaciones diferenciadas que pudieran corresponderse con tres linajes distintos. Estos linajes estarían directamente relacionados con las ganaderías que han tenido una mayor contribución a la constitución genética de la raza. Por otro lado, hay un conjunto muy numeroso de individuos con una mezcla de orígenes. La información molecular describe una estructura estratificada de la población que se corresponde con la evolución demográfica de la raza. Es esencial analizar en mayor profundidad la composición de este último grupo de animales para determinar cómo afecta a la variabilidad genética de la población de ANI. SUMMARY Summary Livestock sector is gradually dominated by intensive and specialized systems where the production environment is controlled and the production traits are the main criteria for the selection of species and breeds. In the meantime, the traditional use of domestic animals for draught work, clothes and manure has been replaced by industrial products. As a consequence of both these changes, the intensively selected breeds closely linked with high-input highoutput production systems have displaced many native breeds where the selection has practically ceased or been very mild. People are now more aware of the state of endangerment among the native breeds and the previously ignored values of livestock are gaining recognition. For some decades now, the economic, socio-cultural, environmental and food security function of livestock breeds have been accepted worldwide and their loss has been recognized as a major problem. Therefore, the conservation of farm animal genetic resources (FAnGR) has been recommended. The conservation of FAnGR is controversial due to the complexity of the evaluation of its functions. This evaluation is difficult due to the nature of FAnGR both as private and public good. As some economists have highlighted, livestock animals are private goods, however, they are also public goods by their functions. Therefore, there is a need to increase the knowledge about the value of all livestock functions since to support the decision-making for the sustainable conservation and breeding of livestock. This is not straightforward since the relative importance of livestock functions depends on time, place, species and breed. Since livestock play a variety of roles, their production is driven by interrelated and everchanging economic, technical, environmental, social, cultural and political elements involving an enormous range of stakeholders. Not only FAnGR functions but also the importance of factors affecting the development and conservation of FAnGR can be very different across geographical areas. Furthermore, heterogeneity can be found even within breeds. Local breeds are nowadays raised by highly diverse farmers in equally diverse farms. It is quite reasonable to think that farmer is the major actor in the in situ conservation of livestock breeds. Thus, there is a need to understand the farmers’ motivations, decision making processes and the impact of their decisions on the genetic structure of breeds. In this PhD thesis we explore different social, economic and genetic aspects involved in the conservation of local cattle breeds, i.e. FAnGR, in Europe seeking to contribute to the scientific understanding of this complex issue. We aim to achieve a comprehensive view of the processes involved in the conservation and development of local cattle breeds and have made special efforts in discussing the implications of the research results in this respect. The final outcome of the thesis is to illustrate how quantitative methods can be exploited in designing and establishing sound strategies and programmes for the conservation and development of local livestock breeds. Firstly we explored the public non-market attributes of the total economic value (TEV) of livestock, using the Spanish Alistana-Sanabresa (AS) cattle breed as a case study. Total economic value of any good comprises both use and non-use components, where the latter include option, bequest and existence values. For livestock, the direct use values are mainly stemming from production outputs. Indirect use values relate to the role of livestock as a maintainer of rural culture and landscape. The option value is related to the potential use of livestock, the bequest values relate to the value associated with the inheritance of the resources to future generation and the existence values relate to the utility perceived by people from knowing that specific resources exist. We aimed to determine the relative importance of the non-market components of the TEV of the AS breed, the socio-economic variables that influence how people value the different components of TEV and to assess the implications of the Spanish national conservation strategy for the AS breed. To do so, we used a choice experiment (CE) approach and applied the technique to assess people’s willingness to pay (WTP) for the conservation of AS breed. The use of CE allows the valuation of the individual components of TEV for a given good. We analysed the choice data using a random parameter logit (RPL) model. AS breed was found to have a significant public good value. Its most important values were related to the indirect use value due to the maintenance of Zamorian culture and the existence value (both represent over 80% of its TEV). There were several socioeconomic variables influencing people’s valuation of the public service of the breed. In the case of AS breed, the place of living (city or rural area), having seen animals of the breed, having eaten breed products and the respondents’ attitude towards economic development – environment conflicts do influence people’s WTP for AS conservation. We also found that people do not have a complete picture of all the functions and roles that AS breed as AnGR. Therefore, the actions for increasing awareness of AS should go to that direction. The farmers will need incentives to exploit some of the public goods values and maintain the breed population size at socially desirable levels. One such mechanism could be related to the development of agritourism, which would enhance the private good value and provide an important addition to the conservation and utilisation strategy. However, the farmers need a serious evaluation on how to invest in niche product development or how to improve product quality and brand recognition. Using the understanding on the importance of the public function of local cattle we tried to depict the current diversity regarding technical, economic and social factors found in local cattle farming across Europe. To do so we focused in an international collaborative project on the case of fifteen local cattle breeds in eight European countries. We investigated the variation among the countries to detect the common key elements, which affect the viability of local breeds. We surveyed with interviews a total of 355 farms across the fifteen breeds. We used the planned herd size changes by the farmer as an indicator of breed viability. The questionnaire included several economic, technical and social aspects with potential influence on breeds’ demographic trends. We analysed the data using multivariate statistical techniques, such as discriminat analysis and logistic regression. The factors affecting a local breed’s viability were highly heterogeneous across Europe. In some countries, farmers did not recognise any high social value attached to keeping a local cattle breed. Hence there is a need to develop communication programmes across EU countries making people aware about the diversity and importance of values associated to raising local breeds. The countries were also very variable regarding the importance of local markets and the percentage of farm land owned by the farmers. Despite the country specificities, there were also common factors affecting the breed viability across Europe. The factors were from different grounds, from social, such as the age of the farmer and the social appreciation of their work, to technicalorganizational, such as the farmers’ attitude to collaborating with each other. The heterogeneity found reflects the variation in breeding systems and production environment (in the socioeconomic, technical and ecological sense) present in Europe. Therefore, caution should be taken in implementing common policies at the country level. Variability could also be rather high within countries due to breed specificities. Therefore, the national policies should be flexible to adapt to the specificities. The variables significantly associated with breed viability should be positively incorporated in the conservation strategies, and considered in developing common and/or national policies. The strategy preparation and policy planning should go beyond the provision of a general economic support to compensate farmers for the lower profitability of local breeds. Of particular interest is the observation that the opportunity for farmer collaboration and the appreciation by the society of the cultural, environmental and social role of local cattle farming were positively associated with the breed survival. In addition, farmer's high age is not only a problem of poor generation transfer but it is also a problem because it might lead to a lower attitude to investing in farming activities and to a lower ability to adapt to environment changes. The farmers’ adaptation capability may be a key point for the viability of local breeds. Decision making tools can help to get a comprehensive view on the conservation and development of local breeds. It allows us to use a systematic and structured approach for identifying and prioritizing conservation and development strategies. We used SWOT (Strengths, Weaknesses Opportunities and Threats) analysis for this purpose and recognized that many conservation and development projects rely on farmers. We developed a quantified SWOT method and applied it in the aforementioned collaborative research to a set of thirteen cattle breeds in six European countries. The method has four steps: definition of the system, identification and grouping of the driving factors, quantification of the importance of driving factors and identification and prioritization of the strategies. The factors were determined following a multi-stakeholder approach and grouped with a three level structure. FAnGR expert groups ranked the factors and a quantification process was implemented to identify and prioritize strategies. The structure of the SWOT analysis allowed analyzing the conservation problem from general down to specific perspectives. Joining breed specific analyses into a common SWOT analysis permitted comparison of breed cases across countries. We identified 99 driving factors across breeds. The across breed analysis revealed that irrelevant factors were consistent. There was high heterogeneity among the most relevant factors and strategies. The strategies increased eligibility as they lost specificity. Although the situation was very heterogeneous, the most promising factors and strategies were linked to the positive aspects (Strengths and Opportunities). Therefore, the future of the studied local breed is promising. The results of our analysis also confirmed the high relevance of the cultural value of the breeds. The most important internal factors (strengths and weaknesses) were related farmers and production systems. The most important opportunities were found in developing and marketing new products, while the most relevant threats were found in selling the current conventional products. In this regard, it should be fruitful to work on farmers’ motivation, collaboration, and capacity building. We conclude that European policies should focus on general aspects and be flexible enough to be adapted to the country and breed specificities. As mentioned, farmers have a key role in the conservation and development of a local cattle breed. Therefore, it is very relevant to understand the implications of farmer heterogeneity within a breed for its viability. In the fourth part of the thesis, we developed a general farmer typology to help analyzing the relations between farmer features and farm profiles, herd dynamics and farmers’ decision making. In the analysis we applied and used the sociological framework of economic and cultural capital and studied how the determined farmer types were linked to farm profiles and breeding decisions, among others. The typology was based on measurable socioeconomic factors indicating the economic and cultural capital of farmers. A group of 85 farmers raising the Spanish Avileña-Negra Ibérica (ANI) local cattle breed was used to illustrate and test the procedure. The farmer types were defined by a hierarchical cluster analysis with a set of canonical variables derived from the following five the socioeconomic factors: the formal educational level of the farmer, the year the farmer started keeping the ANI breed, the percentage of the total family income covered by the farm, the percentage of the total farm land owned by the farmer and the farmer’s age. The present ANI farmer types were much more complex than what they were in the past. We found that the farmer types differed in many socioeconomic aspects and in the farms profile. Furthermore, the types also differentiate farmers with respect to decisions about changing the farm size, breeding aims and stated reactions towards hypothetical subsidy variation. We have verified that economic and cultural capitals are not independent and further showed how they are interacting in the different farmer types. The farmers related to the types with high economic, institutionalized and embodied cultural capitals had a higher demand of breeding animals from others farmers of the breed, which may be related to the higher social prestige within the breed. One of the key implications of this finding for the future of the breed is whether or not the prestige of farmers is related to genetic superiority of their animals, what is to say, that it is related with a sound use of tools that farmers have available to make selection decisions. The farmer types differed in the form of collaboration and in the reactions to the hypothetical variation in subsidies. There were farmers with low dependency on subsidies, while most of them are highly dependent on subsidies. Therefore, any drastic change in the subsidy programme might have influence on the development of local breeds. The adaptation of these programme to the farmers’ heterogeneity might increase its efficacy, thus it would be interesting to explore ways of doing it. We conclude highlighting the need to have a variety of policies, which take into account the heterogeneity among the farmers. To finish we dealt with the genetic structure of livestock populations. Farmers’ decisions on the breeding animals and their progeny numbers shape the demographic and genetic structure of the breeds. Nowadays there is a renovated interest in studying the population structure since it can bias the prediction of genomic breeding values and genome wide association studies. We determined the genetic structure of ANI breed using two different methods, a graphical clustering algorithm (GCA) and a Bayesian clustering algorithm (STRUCTURE) were used. We paid particular attention to the influence that the presence of closely related individuals and the genetic differentiation of subpopulations may have on the inferences about the population structure. We first evaluated the performance of the algorithms in simulated populations. Then we inferred the genetic structure of the Spanish cattle breed ANI analysing a data set of 13343 animals (genotyped for 17 microsatellites) from 57 herds. ANI breed is an example of a population with complex relationships. We used the herdbook to study the gene flow, estimation among other things, the contribution of different herds to the genetic composition of the ANI breed. For the simulated scenarios, when FST among subpopulations was sufficiently high, both algorithms consistently inferred the correct structure regardless of the presence of related individuals. However, when the genetic differentiation among subpopulations was low, STRUCTURE identified the family based structure while GCA did not provide any consistent picture. The GCA was a fast and efficient method to infer genetic structure to determine the hidden core structure of a population with complex history and relationships. GCA could also be used to narrow down the number of clusters to be tested by STRUCTURE. Both, STRUCTURE and GCA describe a similar structure for the ANI breed suggesting that the results are robust. ANI population was found to have three genetically differentiated clusters that could correspond to three genetic lineages. These are directly related to the herds with a major contribution to the breed. In addition, ANI breed has also a large pool made of individuals with an admixture of origins. The genetic structure of ANI, assessed by molecular information, shows a stratification that corresponds to the demographic evolution of the breed. It will be of great importance to learn more about the composition of the pool and study how it is related to the existing genetic variability of the breed.
Resumo:
Species selection for forest restoration is often supported by expert knowledge on local distribution patterns of native tree species. This approach is not applicable to largely deforested regions unless enough data on pre-human tree species distribution is available. In such regions, ecological niche models may provide essential information to support species selection in the framework of forest restoration planning. In this study we used ecological niche models to predict habitat suitability for native tree species in "Tierra de Campos" region, an almost totally deforested area of the Duero Basin (Spain). Previously available models provide habitat suitability predictions for dominant native tree species, but including non-dominant tree species in the forest restoration planning may be desirable to promote biodiversity, specially in largely deforested areas were near seed sources are not expected. We used the Forest Map of Spain as species occurrence data source to maximize the number of modeled tree species. Penalized logistic regression was used to train models using climate and lithological predictors. Using model predictions a set of tools were developed to support species selection in forest restoration planning. Model predictions were used to build ordered lists of suitable species for each cell of the study area. The suitable species lists were summarized drawing maps that showed the two most suitable species for each cell. Additionally, potential distribution maps of the suitable species for the study area were drawn. For a scenario with two dominant species, the models predicted a mixed forest (Quercus ilex and a coniferous tree species) for almost one half of the study area. According to the models, 22 non-dominant native tree species are suitable for the study area, with up to six suitable species per cell. The model predictions pointed to Crataegus monogyna, Juniperus communis, J.oxycedrus and J.phoenicea as the most suitable non-dominant native tree species in the study area. Our results encourage further use of ecological niche models for forest restoration planning in largely deforested regions.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.
Resumo:
RESUMEN El apoyo a la selección de especies a la restauración de la vegetación en España en los últimos 40 años se ha basado fundamentalmente en modelos de distribución de especies, también llamados modelos de nicho ecológico, que estiman la probabilidad de presencia de las especies en función de las condiciones del medio físico (clima, suelo, etc.). Con esta tesis se ha intentado contribuir a la mejora de la capacidad predictiva de los modelos introduciendo algunas propuestas metodológicas adaptadas a los datos disponibles actualmente en España y enfocadas al uso de los modelos en la selección de especies. No siempre se dispone de datos a una resolución espacial adecuada para la escala de los proyectos de restauración de la vegetación. Sin embrago es habitual contar con datos de baja resolución espacial para casi todas las especies vegetales presentes en España. Se propone un método de recalibración que actualiza un modelo de regresión logística de baja resolución espacial con una nueva muestra de alta resolución espacial. El método permite obtener predicciones de calidad aceptable con muestras relativamente pequeñas (25 presencias de la especie) frente a las muestras mucho mayores (más de 100 presencias) que requería una estrategia de modelización convencional que no usara el modelo previo. La selección del método estadístico puede influir decisivamente en la capacidad predictiva de los modelos y por esa razón la comparación de métodos ha recibido mucha atención en la última década. Los estudios previos consideraban a la regresión logística como un método inferior a técnicas más modernas como las de máxima entropía. Los resultados de la tesis demuestran que esa diferencia observada se debe a que los modelos de máxima entropía incluyen técnicas de regularización y la versión de la regresión logística usada en las comparaciones no. Una vez incorporada la regularización a la regresión logística usando penalización, las diferencias en cuanto a capacidad predictiva desaparecen. La regresión logística penalizada es, por tanto, una alternativa más para el ajuste de modelos de distribución de especies y está a la altura de los métodos modernos con mejor capacidad predictiva como los de máxima entropía. A menudo, los modelos de distribución de especies no incluyen variables relativas al suelo debido a que no es habitual que se disponga de mediciones directas de sus propiedades físicas o químicas. La incorporación de datos de baja resolución espacial proveniente de mapas de suelo nacionales o continentales podría ser una alternativa. Los resultados de esta tesis sugieren que los modelos de distribución de especies de alta resolución espacial mejoran de forma ligera pero estadísticamente significativa su capacidad predictiva cuando se incorporan variables relativas al suelo procedente de mapas de baja resolución espacial. La validación es una de las etapas fundamentales del desarrollo de cualquier modelo empírico como los modelos de distribución de especies. Lo habitual es validar los modelos evaluando su capacidad predictiva especie a especie, es decir, comparando en un conjunto de localidades la presencia o ausencia observada de la especie con las predicciones del modelo. Este tipo de evaluación no responde a una cuestión clave en la restauración de la vegetación ¿cuales son las n especies más idóneas para el lugar a restaurar? Se ha propuesto un método de evaluación de modelos adaptado a esta cuestión que consiste en estimar la capacidad de un conjunto de modelos para discriminar entre las especies presentes y ausentes de un lugar concreto. El método se ha aplicado con éxito a la validación de 188 modelos de distribución de especies leñosas orientados a la selección de especies para la restauración de la vegetación en España. Las mejoras metodológicas propuestas permiten mejorar la capacidad predictiva de los modelos de distribución de especies aplicados a la selección de especies en la restauración de la vegetación y también permiten ampliar el número de especies para las que se puede contar con un modelo que apoye la toma de decisiones. SUMMARY During the last 40 years, decision support tools for plant species selection in ecological restoration in Spain have been based on species distribution models (also called ecological niche models), that estimate the probability of occurrence of the species as a function of environmental predictors (e.g., climate, soil). In this Thesis some methodological improvements are proposed to contribute to a better predictive performance of such models, given the current data available in Spain and focusing in the application of the models to selection of species for ecological restoration. Fine grained species distribution data are required to train models to be used at the scale of the ecological restoration projects, but this kind of data are not always available for every species. On the other hand, coarse grained data are available for almost every species in Spain. A recalibration method is proposed that updates a coarse grained logistic regression model using a new fine grained updating sample. The method allows obtaining acceptable predictive performance with reasonably small updating sample (25 occurrences of the species), in contrast with the much larger samples (more than 100 occurrences) required for a conventional modeling approach that discards the coarse grained data. The choice of the statistical method may have a dramatic effect on model performance, therefore comparisons of methods have received much interest in the last decade. Previous studies have shown a poorer performance of the logistic regression compared to novel methods like maximum entropy models. The results of this Thesis show that the observed difference is caused by the fact that maximum entropy models include regularization techniques and the versions of logistic regression compared do not. Once regularization has been added to the logistic regression using a penalization procedure, the differences in model performance disappear. Therefore, penalized logistic regression may be considered one of the best performing methods to model species distributions. Usually, species distribution models do not consider soil related predictors because direct measurements of the chemical or physical properties are often lacking. The inclusion of coarse grained soil data from national or continental soil maps could be a reasonable alternative. The results of this Thesis suggest that the performance of the models slightly increase after including soil predictors form coarse grained soil maps. Model validation is a key stage of the development of empirical models, such as species distribution models. The usual way of validating is based on the evaluation of model performance for each species separately, i.e., comparing observed species presences or absence to predicted probabilities in a set of sites. This kind of evaluation is not informative for a common question in ecological restoration projects: which n species are the most suitable for the environment of the site to be restored? A method has been proposed to address this question that estimates the ability of a set of models to discriminate among present and absent species in a evaluation site. The method has been successfully applied to the validation of 188 species distribution models used to support decisions on species selection for ecological restoration in Spain. The proposed methodological approaches improve the predictive performance of the predictive models applied to species selection in ecological restoration and increase the number of species for which a model that supports decisions can be fitted.
Resumo:
El comercio electrónico ha experimentado un fuerte crecimiento en los últimos años, favorecido especialmente por el aumento de las tasas de penetración de Internet en todo el mundo. Sin embargo, no todos los países están evolucionando de la misma manera, con un espectro que va desde las naciones pioneras en desarrollo de tecnologías de la información y comunicaciones, que cuentan con una elevado porcentaje de internautas y de compradores online, hasta las rezagadas de rápida adopción en las que, pese a contar con una menor penetración de acceso, presentan una alta tasa de internautas compradores. Entre ambos extremos se encuentran países como España que, aunque alcanzó hace años una tasa considerable de penetración de usuarios de Internet, no ha conseguido una buena tasa de transformación de internautas en compradores. Pese a que el comercio electrónico ha experimentado importantes aumentos en los últimos años, sus tasas de crecimiento siguen estando por debajo de países con características socio-económicas similares. Para intentar conocer las razones que afectan a la adopción del comercio por parte de los compradores, la investigación científica del fenómeno ha empleado diferentes enfoques teóricos. De entre todos ellos ha destacado el uso de los modelos de adopción, proveniente de la literatura de adopción de sistemas de información en entornos organizativos. Estos modelos se basan en las percepciones de los compradores para determinar qué factores pueden predecir mejor la intención de compra y, en consecuencia, la conducta real de compra de los usuarios. Pese a que en los últimos años han proliferado los trabajos de investigación que aplican los modelos de adopción al comercio electrónico, casi todos tratan de validar sus hipótesis mediante el análisis de muestras de consumidores tratadas como un único conjunto, y del que se obtienen conclusiones generales. Sin embargo, desde el origen del marketing, y en especial a partir de la segunda mitad del siglo XIX, se considera que existen diferencias en el comportamiento de los consumidores, que pueden ser debidas a características demográficas, sociológicas o psicológicas. Estas diferencias se traducen en necesidades distintas, que sólo podrán ser satisfechas con una oferta adaptada por parte de los vendedores. Además, por contar el comercio electrónico con unas características particulares que lo diferencian del comercio tradicional –especialmente por la falta de contacto físico entre el comprador y el producto– a las diferencias en la adopción para cada consumidor se le añaden las diferencias derivadas del tipo de producto adquirido, que si bien habían sido consideradas en el canal físico, en el comercio electrónico cobran especial relevancia. A la vista de todo ello, el presente trabajo pretende abordar el estudio de los factores determinantes de la intención de compra y la conducta real de compra en comercio electrónico por parte del consumidor final español, teniendo en cuenta el tipo de segmento al que pertenezca dicho comprador y el tipo de producto considerado. Para ello, el trabajo contiene ocho apartados entre los que se encuentran cuatro bloques teóricos y tres bloques empíricos, además de las conclusiones. Estos bloques dan lugar a los siguientes ocho capítulos por orden de aparición en el trabajo: introducción, situación del comercio electrónico, modelos de adopción de tecnología, segmentación en comercio electrónico, diseño previo del trabajo empírico, diseño de la investigación, análisis de los resultados y conclusiones. El capítulo introductorio justifica la relevancia de la investigación, además de fijar los objetivos, la metodología y las fases seguidas para el desarrollo del trabajo. La justificación se complementa con el segundo capítulo, que cuenta con dos elementos principales: en primer lugar se define el concepto de comercio electrónico y se hace una breve retrospectiva desde sus orígenes hasta la situación actual en un contexto global; en segundo lugar, el análisis estudia la evolución del comercio electrónico en España, mostrando su desarrollo y situación presente a partir de sus principales indicadores. Este apartado no sólo permite conocer el contexto de la investigación, sino que además permite contrastar la relevancia de la muestra utilizada en el presente estudio con el perfil español respecto al comercio electrónico. Los capítulos tercero –modelos de adopción de tecnologías– y cuarto –segmentación en comercio electrónico– sientan las bases teóricas necesarias para abordar el estudio. En el capítulo tres se hace una revisión general de la literatura de modelos de adopción de tecnología y, en particular, de los modelos de adopción empleados en el ámbito del comercio electrónico. El resultado de dicha revisión deriva en la construcción de un modelo adaptado basado en los modelos UTAUT (Unified Theory of Acceptance and Use of Technology, Teoría unificada de la aceptación y el uso de la tecnología) y UTAUT2, combinado con dos factores específicos de adopción del comercio electrónico: el riesgo percibido y la confianza percibida. Por su parte, en el capítulo cuatro se revisan las metodologías de segmentación de clientes y productos empleadas en la literatura. De dicha revisión se obtienen un amplio conjunto de variables de las que finalmente se escogen nueve variables de clasificación que se consideran adecuadas tanto por su adaptación al contexto del comercio electrónico como por su adecuación a las características de la muestra empleada para validar el modelo. Las nueve variables se agrupan en tres conjuntos: variables de tipo socio-demográfico –género, edad, nivel de estudios, nivel de ingresos, tamaño de la unidad familiar y estado civil–, de comportamiento de compra – experiencia de compra por Internet y frecuencia de compra por Internet– y de tipo psicográfico –motivaciones de compra por Internet. La segunda parte del capítulo cuatro se dedica a la revisión de los criterios empleados en la literatura para la clasificación de los productos en el contexto del comercio electrónico. De dicha revisión se obtienen quince grupos de variables que pueden tomar un total de treinta y cuatro valores, lo que deriva en un elevado número de combinaciones posibles. Sin embargo, pese a haber sido utilizados en el contexto del comercio electrónico, no en todos los casos se ha comprobado la influencia de dichas variables respecto a la intención de compra o la conducta real de compra por Internet; por este motivo, y con el objetivo de definir una clasificación robusta y abordable de tipos de productos, en el capitulo cinco se lleva a cabo una validación de las variables de clasificación de productos mediante un experimento previo con 207 muestras. Seleccionando sólo aquellas variables objetivas que no dependan de la interpretación personal del consumidores y que determinen grupos significativamente distintos respecto a la intención y conducta de compra de los consumidores, se obtiene un modelo de dos variables que combinadas dan lugar a cuatro tipos de productos: bien digital, bien no digital, servicio digital y servicio no digital. Definidos el modelo de adopción y los criterios de segmentación de consumidores y productos, en el sexto capítulo se desarrolla el modelo completo de investigación formado por un conjunto de hipótesis obtenidas de la revisión de la literatura de los capítulos anteriores, en las que se definen las hipótesis de investigación con respecto a las influencias esperadas de las variables de segmentación sobre las relaciones del modelo de adopción. Este modelo confiere a la investigación un carácter social y de tipo fundamentalmente exploratorio, en el que en muchos casos ni siquiera se han encontrado evidencias empíricas previas que permitan el enunciado de hipótesis sobre la influencia de determinadas variables de segmentación. El capítulo seis contiene además la descripción del instrumento de medida empleado en la investigación, conformado por un total de 125 preguntas y sus correspondientes escalas de medida, así como la descripción de la muestra representativa empleada en la validación del modelo, compuesta por un grupo de 817 personas españolas o residentes en España. El capítulo siete constituye el núcleo del análisis empírico del trabajo de investigación, que se compone de dos elementos fundamentales. Primeramente se describen las técnicas estadísticas aplicadas para el estudio de los datos que, dada la complejidad del análisis, se dividen en tres grupos fundamentales: Método de mínimos cuadrados parciales (PLS, Partial Least Squares): herramienta estadística de análisis multivariante con capacidad de análisis predictivo que se emplea en la determinación de las relaciones estructurales de los modelos propuestos. Análisis multigrupo: conjunto de técnicas que permiten comparar los resultados obtenidos con el método PLS entre dos o más grupos derivados del uso de una o más variables de segmentación. En este caso se emplean cinco métodos de comparación, lo que permite asimismo comparar los rendimientos de cada uno de los métodos. Determinación de segmentos no identificados a priori: en el caso de algunas de las variables de segmentación no existe un criterio de clasificación definido a priori, sino que se obtiene a partir de la aplicación de técnicas estadísticas de clasificación. En este caso se emplean dos técnicas fundamentales: análisis de componentes principales –dado el elevado número de variables empleadas para la clasificación– y análisis clúster –del que se combina una técnica jerárquica que calcula el número óptimo de segmentos, con una técnica por etapas que es más eficiente en la clasificación, pero exige conocer el número de clústeres a priori. La aplicación de dichas técnicas estadísticas sobre los modelos resultantes de considerar los distintos criterios de segmentación, tanto de clientes como de productos, da lugar al análisis de un total de 128 modelos de adopción de comercio electrónico y 65 comparaciones multigrupo, cuyos resultados y principales consideraciones son elaboradas a lo largo del capítulo. Para concluir, el capítulo ocho recoge las conclusiones del trabajo divididas en cuatro partes diferenciadas. En primer lugar se examina el grado de alcance de los objetivos planteados al inicio de la investigación; después se desarrollan las principales contribuciones que este trabajo aporta tanto desde el punto de vista metodológico, como desde los punto de vista teórico y práctico; en tercer lugar, se profundiza en las conclusiones derivadas del estudio empírico, que se clasifican según los criterios de segmentación empleados, y que combinan resultados confirmatorios y exploratorios; por último, el trabajo recopila las principales limitaciones de la investigación, tanto de carácter teórico como empírico, así como aquellos aspectos que no habiendo podido plantearse dentro del contexto de este estudio, o como consecuencia de los resultados alcanzados, se presentan como líneas futuras de investigación. ABSTRACT Favoured by an increase of Internet penetration rates across the globe, electronic commerce has experienced a rapid growth over the last few years. Nevertheless, adoption of electronic commerce has differed from one country to another. On one hand, it has been observed that countries leading e-commerce adoption have a large percentage of Internet users as well as of online purchasers; on the other hand, other markets, despite having a low percentage of Internet users, show a high percentage of online buyers. Halfway between those two ends of the spectrum, we find countries such as Spain which, despite having moderately high Internet penetration rates and similar socio-economic characteristics as some of the leading countries, have failed to turn Internet users into active online buyers. Several theoretical approaches have been taken in an attempt to define the factors that influence the use of electronic commerce systems by customers. One of the betterknown frameworks to characterize adoption factors is the acceptance modelling theory, which is derived from the information systems adoption in organizational environments. These models are based on individual perceptions on which factors determine purchase intention, as a mean to explain users’ actual purchasing behaviour. Even though research on electronic commerce adoption models has increased in terms of volume and scope over the last years, the majority of studies validate their hypothesis by using a single sample of consumers from which they obtain general conclusions. Nevertheless, since the birth of marketing, and more specifically from the second half of the 19th century, differences in consumer behaviour owing to demographic, sociologic and psychological characteristics have also been taken into account. And such differences are generally translated into different needs that can only be satisfied when sellers adapt their offer to their target market. Electronic commerce has a number of features that makes it different when compared to traditional commerce; the best example of this is the lack of physical contact between customers and products, and between customers and vendors. Other than that, some differences that depend on the type of product may also play an important role in electronic commerce. From all the above, the present research aims to address the study of the main factors influencing purchase intention and actual purchase behaviour in electronic commerce by Spanish end-consumers, taking into consideration both the customer group to which they belong and the type of product being purchased. In order to achieve this goal, this Thesis is structured in eight chapters: four theoretical sections, three empirical blocks and a final section summarizing the conclusions derived from the research. The chapters are arranged in sequence as follows: introduction, current state of electronic commerce, technology adoption models, electronic commerce segmentation, preliminary design of the empirical work, research design, data analysis and results, and conclusions. The introductory chapter offers a detailed justification of the relevance of this study in the context of e-commerce adoption research; it also sets out the objectives, methodology and research stages. The second chapter further expands and complements the introductory chapter, focusing on two elements: the concept of electronic commerce and its evolution from a general point of view, and the evolution of electronic commerce in Spain and main indicators of adoption. This section is intended to allow the reader to understand the research context, and also to serve as a basis to justify the relevance and representativeness of the sample used in this study. Chapters three (technology acceptance models) and four (segmentation in electronic commerce) set the theoretical foundations for the study. Chapter 3 presents a thorough literature review of technology adoption modelling, focusing on previous studies on electronic commerce acceptance. As a result of the literature review, the research framework is built upon a model based on UTAUT (Unified Theory of Acceptance and Use of Technology) and its evolution, UTAUT2, including two specific electronic commerce adoption factors: perceived risk and perceived trust. Chapter 4 deals with client and product segmentation methodologies used by experts. From the literature review, a wide range of classification variables is studied, and a shortlist of nine classification variables has been selected for inclusion in the research. The criteria for variable selection were their adequacy to electronic commerce characteristics, as well as adequacy to the sample characteristics. The nine variables have been classified in three groups: socio-demographic (gender, age, education level, income, family size and relationship status), behavioural (experience in electronic commerce and frequency of purchase) and psychographic (online purchase motivations) variables. The second half of chapter 4 is devoted to a review of the product classification criteria in electronic commerce. The review has led to the identification of a final set of fifteen groups of variables, whose combination offered a total of thirty-four possible outputs. However, due to the lack of empirical evidence in the context of electronic commerce, further investigation on the validity of this set of product classifications was deemed necessary. For this reason, chapter 5 proposes an empirical study to test the different product classification variables with 207 samples. A selection of product classifications including only those variables that are objective, able to identify distinct groups and not dependent on consumers’ point of view, led to a final classification of products which consisted on two groups of variables for the final empirical study. The combination of these two groups gave rise to four types of products: digital and non-digital goods, and digital and non-digital services. Chapter six characterizes the research –social, exploratory research– and presents the final research model and research hypotheses. The exploratory nature of the research becomes patent in instances where no prior empirical evidence on the influence of certain segmentation variables was found. Chapter six also includes the description of the measurement instrument used in the research, consisting of a total of 125 questions –and the measurement scales associated to each of them– as well as the description of the sample used for model validation (consisting of 817 Spanish residents). Chapter 7 is the core of the empirical analysis performed to validate the research model, and it is divided into two separate parts: description of the statistical techniques used for data analysis, and actual data analysis and results. The first part is structured in three different blocks: Partial Least Squares Method (PLS): the multi-variable analysis is a statistical method used to determine structural relationships of models and their predictive validity; Multi-group analysis: a set of techniques that allow comparing the outcomes of PLS analysis between two or more groups, by using one or more segmentation variables. More specifically, five comparison methods were used, which additionally gives the opportunity to assess the efficiency of each method. Determination of a priori undefined segments: in some cases, classification criteria did not necessarily exist for some segmentation variables, such as customer motivations. In these cases, the application of statistical classification techniques is required. For this study, two main classification techniques were used sequentially: principal component factor analysis –in order to reduce the number of variables– and cluster analysis. The application of the statistical methods to the models derived from the inclusion of the various segmentation criteria –for both clients and products–, led to the analysis of 128 different electronic commerce adoption models and 65 multi group comparisons. Finally, chapter 8 summarizes the conclusions from the research, divided into four parts: first, an assessment of the degree of achievement of the different research objectives is offered; then, methodological, theoretical and practical implications of the research are drawn; this is followed by a discussion on the results from the empirical study –based on the segmentation criteria for the research–; fourth, and last, the main limitations of the research –both empirical and theoretical– as well as future avenues of research are detailed.