3 resultados para Intrinsic ferromagnetism

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofabrication has allowed the development of new concepts such as magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls on magnetic nanostripes. One of the issues that has to be solved before devices can meet the market demands is the stochastic behaviour of the domain wall movement in magnetic nanostripes. Here we show that the stochastic nature of the domain wall motion in permalloy nanostripes can be suppressed at very low fields (0.6-2.7 Oe). We also find different field regimes for this stochastic motion that match well with the domain wall propagation modes. The highest pinning probability is found around the precessional mode and, interestingly, it does not depend on the external field in this regime. These results constitute an experimental evidence of the intrinsic nature of the stochastic pinning of domain walls in soft magnetic nanostripes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the modelling and validation of an evolvable hardware architecture which can be mapped on a 2D systolic structure implemented on commercial reconfigurable FPGAs. The adaptation capabilities of the architecture are exercised to validate its evolvability. The underlying proposal is the use of a library of reconfigurable components characterised by their partial bitstreams, which are used by the Evolutionary Algorithm to find a solution to a given task. Evolution of image noise filters is selected as the proof of concept application. Results show that computation speed of the resulting evolved circuit is higher than with the Virtual Reconfigurable Circuits approach, and this can be exploited on the evolution process by using dynamic reconfiguration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an experimental study on the spin-waves relaxation rate in two series of nanodisks of diameter ϕ=300 , 500, and 700 nm, patterned out of two systems: a 20 nm thick yttrium iron garnet (YIG) film grown by pulsed laser deposition either bare or covered by 13 nm of Pt. Using a magnetic resonance force microscope, we measure precisely the ferromagnetic resonance linewidth of each individual YIG and YIG|Pt nanodisks. We find that the linewidth in the nanostructure is sensibly smaller than the one measured in the extended film. Analysis of the frequency dependence of the spectral linewidth indicates that the improvement is principally due to the suppression of the inhomogeneous part of the broadening due to geometrical confinement, suggesting that only the homogeneous broadening contributes to the linewidth of the nanostructure. For the bare YIG nano-disks, the broadening is associated to a damping constant α=4 × 10−4 . A threefold increase of the linewidth is observed for the series with Pt cap layer, attributed to the spin pumping effect. The measured enhancement allows to extract the spin mixing conductance found to be G↑↓=1.55 × 1014 Ω−1 m−2 for our YIG(20nm)|Pt interface, thus opening large opportunities for the design of YIG based nanostructures with optimized magnetic losses.