3 resultados para IN-OFFICE
em Universidad Politécnica de Madrid
Resumo:
Office automation is one of the fields where the complexity related with technologies and working environments can be best shown. This is the starting point we have chosen to build up a theoretical model that shows us a scene quite different from the one traditionally considered. Through the development of the model, the levels of complexity associated with office automation and office environments have been identified, establishing a relationship between them. Thus, the model allows to state a general principle for sociotechnical design of office automation systems, comprising the ontological distinctions needed to properly evaluate each particular technology and its virtual contribution to office automation. From this fact comes the model's taxonomic ability to draw a global perspective of the state-of-art in office automation technologies.
Resumo:
This paper describes a novel deployment of an intelligent user-centered HVAC (Heating, Ventilating and Air Conditioner) control system. The main objective of this system is to optimize user comfort and to reduce energy consumption in office buildings. Existing commercial HVAC control systems work in a fixed and predetermined way. The novelty of the proposed system is that it adapts dynamically to the user and to the building environment. For this purpose the system architecture has been designed under the paradigm of Ambient Intelligence. A prototype of the system proposed has been tested in a real-world environment.
Resumo:
A photovoltaic (PV) hybrid system combines PV with other forms of electricity generation, usually a diesel generator. The system presented in this paper uses concentration photovoltaic (CPV) as the main generator in combination with a storage system and the grid, configured as the backup power supply. The load of the system consists of an air conditioning system of an office building. This paper presents the results obtained from the first months of operation of the CPV hybrid system installed at Instituto de Sistemas Fotovoltaicos de Concentración facilities together with exhaustive simulations in order to model the system behaviour and be able to improve the self-consumption ratio. This system represents a first approach to the use of a CPV in office buildings complemented by an existing AC-coupled hybrid system. The contribution of this paper to the analysis of this new system and the existing tools available for its simulation, at least a part of it, can be considered as a starting point for the development of these kinds of systems.