20 resultados para Hydroinformatics and Data Innovative Aspects on Teaching
em Universidad Politécnica de Madrid
Resumo:
Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.
Resumo:
The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.
Resumo:
Agro-areas of Arroyos Menores (La Colacha) west and south of Rand south of R?o Cuarto (Prov. of Cordoba, Argentina) basins are very fertile but have high soil loses. Extreme rain events, inundations and other severe erosions forming gullies demand urgently actions in this area to avoid soil degradation and erosion supporting good levels of agro production. The authors first improved hydrologic data on La Colacha, evaluated the systems of soil uses and actions that could be recommended considering the relevant aspects of the study area and applied decision support systems (DSS) with mathematic tools for planning of defences and uses of soils in these areas. These were conducted here using multi-criteria models, in multi-criteria decision making (MCDM); first of discrete MCDM to chose among global types of use of soils, and then of continuous MCDM to evaluate and optimize combined actions, including repartition of soil use and the necessary levels of works for soil conservation and for hydraulic management to conserve against erosion these basins. Relatively global solutions for La Colacha area have been defined and were optimised by Linear Programming in Goal Programming forms that are presented as Weighted or Lexicographic Goal Programming and as Compromise Programming. The decision methods used are described, indicating algorithms used, and examples for some representative scenarios on La Colacha area are given.
Resumo:
The writer would like to point out the existence of a very remarkable Spanish cable-stayed bridge built in 1925, wich is thus older than the first one recorded by the authors (and probably the pioneer in concrete-deck type). The Tempul Aqueduct was designed by the famous Professor Educardo Torroja. The deck is a concrete box girder sustained by two planes of 3 mm diam 37-wire double cables working at 27 kg/mm2.
Resumo:
Incorporation of fiber in cereals may lead to quality issues, thus decreasing consumer acceptance. This is partially due to deterioration of the microstructure, one of the primary quality attributes of cereals. The objective of this study was to better understand the mechanisms by which dietary fibers affect the quality of cereal products during extrusioncooking. The study quantified the effect of amount and type of fiber and whole grain on (i) texture, (ii) structure, and (iii) rehydration properties of extruded cereals. New innovative methods were applied and combined with traditional techniques to characterize both the structure and the rehydration properties. Extruded cereals were produced using a starch-based recipe (whole and wheat flours) and two sources of fibers (oat bran concentrate and wheat bran). The oat and wheat bran levels used in this study were 0, 10, and 20%. The different mixtures were extruded in a pilot twinscrew extruder BC21 (Clextral) and then sugar coated after drying. Mechanical properties of extruded cereals were investigated by compression test. The cellular structure was observed by X-ray tomography. The quality of coating (thickness, homogeneity) was analyzed by optical coherence tomography. The rehydration properties of such cereals in milk were evaluated by magnetic resonance imaging and optical coherence tomography. This work revealed that structure assessment of extruded cereals may lead to a better understanding of the effect of fiber addition on texture and rehydration properties. The application of innovative methods, such as optical coherence tomography and magnetic resonance imaging, was found to be useful to quantify the structural properties.
Resumo:
In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.
Resumo:
In this genre analysis research paper, we compare U.S. patents, contracts, and regulations on technical matters with a focus upon the relation between vagueness and communicative purposes and subpurposes of these three genres. Our main interest is the investigation of intergeneric conventions across the three genres, based on the software analysis of three corpora (one for each genre, 1 million words per corpus). The result of the investigation is that intergeneric conventions are found at the level of types of expressed linguistic vagueness, but that intergeneric conventions at the level of actual formulations are rare. The conclusion is that at this latter level the influence from the situation type underlying the individual genre is more important than the overarching legal character of the genres, when we talk about introducing explicit vagueness in the text.
Resumo:
Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types.
Resumo:
A novel algorithm based on bimatrix game theory has been developed to improve the accuracy and reliability of a speaker diarization system. This algorithm fuses the output data of two open-source speaker diarization programs, LIUM and SHoUT, taking advantage of the best properties of each one. The performance of this new system has been tested by means of audio streams from several movies. From preliminary results on fragments of five movies, improvements of 63% in false alarms and missed speech mistakes have been achieved with respect to LIUM and SHoUT systems working alone. Moreover, we also improve in a 20% the number of recognized speakers, getting close to the real number of speakers in the audio stream
Resumo:
There are a number of factors that contribute to the success of dental implant operations. Among others, is the choice of location in which the prosthetic tooth is to be implanted. This project offers a new approach to analyse jaw tissue for the purpose of selecting suitable locations for teeth implant operations. The application developed takes as input jaw computed tomography stack of slices and trims data outside the jaw area, which is the point of interest. It then reconstructs a three dimensional model of the jaw highlighting points of interest on the reconstructed model. On another hand, data mining techniques have been utilised in order to construct a prediction model based on an information dataset of previous dental implant operations with observed stability values. The goal is to find patterns within the dataset that would help predicting the success likelihood of an implant.
Resumo:
The era of the seed-cast grown monocrystalline-based silicon ingots is coming. Mono-like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost, high productivity and full square-shape that characterize the well-known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells.
Resumo:
Multiple-input multiple-output (MIMO) systems have entailed a great enhancement in wireless communications performances. The use of multiple antennas at each side of the radio link has been included in recent drafts and standards such as WLAN, WIMAX, or DVB-T2. The MIMO performances depend on the antenna array characteristics and thus several aspects have to be taken into account to design MIMO antennas. In the literature, many articles can be found in terms of capacity or antenna design, but in this article, different types of antenna arrays for MIMO systems are measured in a reverberation chamber with and without a phantom as a user's head. As a result, the MIMO performances are degraded by the user in terms of efficiency, diversity gain, and capacity. Omnidirectional antennas such as monopoles with high radiation efficiency offer the highest performance for a rich scattering nonline of sight indoor environment.
Resumo:
The technique of reinforcement of wooden floors is a matter clearly multidisciplinary. The teaching of the subject using the "traditional" method, explaining the theory first and then proposing and solving problems has not been successful. This paper discusses the results of a teaching experiencie. It has been the teaching of the subject by the case method. The results are clearly superior to those obtained with the traditional methodology.
Resumo:
This exploratory study presents a comparison between two samples of microenterprises. One sample is formed by companies involved in product innovation during the current economic crisis and the other is formed by companies not involved in product innovation during the same period. The comparison analyzes which internal factors, supported by the literature as the influential factors of small business innovation, are significant when explaining the main differences between innovative microenterprise and non-innovative ones. The results suggest that the factors related to the organization and activity of the company are the factors which explain the differences between these two types of firms, rather than those factors related to micro-entrepreneurs own profile.
Resumo:
It is known that the Amundsenisen Icefield in Southern Spitzbergen (Svalbard achipelago) is temperate with an upper layer of snow and firn. It is an accumulation area and, though ice/water mass balance is clearly subject to time evolution, observation data on the long-term elevation changes over the past 40 years (Nuth et al., 2010) allow to assume constant icefield surface. Within our study of the plausibility of a subglacial lake (Glowacki et al., 2007), here, we focus on the sensitivity of the system to the thermal effect of the firn and snow layers.