11 resultados para Human beings, Origin of.
em Universidad Politécnica de Madrid
Resumo:
The technical improvement and new applications of Infrared Thermography (IRT) with healthy subjects should be accompanied by results about the reproducibility of IRT measurements in different popula-tion groups. In addition, there is a remarkable necessity of a larger supply on software to analyze IRT images of human beings. Therefore, the objectives of this study were: firstly, to investigate the reproducibility of skin temperature (Tsk) on overweight and obese subjects using IRT in different Regions of Interest (ROI), moments and side-to-side differences (?T); and secondly, to check the reliability of a new software called Termotracker®, specialized on the analysis of IRT images of human beings. Methods: 22 overweight and obese males (11) and females (11) (age: 41,51±7,76 years; height: 1,65±0,09 m; weight: 82,41±11,81 Kg; BMI: 30,17±2,58 kg/m²) were assessed in two consecutive thermograms (5 seconds in-between) by the same observer, using an infrared camera (FLIR T335, Sweden) to get 4 IRT images from the whole body. 11 ROI were selected using Termotracker® to analyze its reproducibility and reliability through Intra-class Correlation Coefficient (ICC) and Coefficient of Variation (CV) values. Results: The reproducibility of the side-to-side differences (?T) between two consecutive thermograms was very high in all ROIs (Mean ICC = 0,989), and excellent between two computers (Mean ICC = 0,998). The re-liability of the software was very high in all the ROIs (Mean ICC = 0,999). Intraexaminer reliability analysing the same subjects in two consecutive thermograms was also very high (Mean ICC = 0,997). CV values of the different ROIs were around 2%. Conclusions: Skin temperature on overweight subjects had an excellent reproducibility for consecutive ther-mograms. The reproducibility of thermal asymmetries (?T) was also good but it had the influence of several factors that should be further investigated. Termotracker® reached excellent reliability results and it is a relia-ble and objective software to analyse IRT images of humans beings.
Resumo:
This paper describes a corpus-based analysis of the humanizing metaphor and supports that constitutive metaphor in science and technology may be highly metaphorical and active. The study, grounded in Lakoff’s Theory of Metaphor and in Langacker’s relational networks, consists of two phases: firstly, Earth Science metaphorical terms were extracted from databases and dictionaries and, then, contextualized by means of the “Wordsmith” tool in a digitalized corpus created to establish their productivity. Secondly, the terms were classified to disclose the main conceptual metaphors underlying them; then, the mappings and the relational networks of the metaphor were described. Results confirm the systematicity and productivity of the metaphor in this field, show evidence that metaphoricity of scientific terms is gradable, and support that Earth Science metaphors are not only created in terms of their concrete salient properties and attributes, but also on abstract human anthropocentric projections.
Resumo:
The objective of this study was to assess the potential of visible and near infrared spectroscopy (VIS+NIRS) combined with multivariate analysis for identifying the geographical origin of cork. The study was carried out on cork planks and natural cork stoppers from the most representative cork-producing areas in the world. Two training sets of international and national cork planks were studied. The first set comprised a total of 479 samples from Morocco, Portugal, and Spain, while the second set comprised a total of 179 samples from the Spanish regions of Andalusia, Catalonia, and Extremadura. A training set of 90 cork stoppers from Andalusia and Catalonia was also studied. Original spectroscopic data were obtained for the transverse sections of the cork planks and for the body and top of the cork stoppers by means of a 6500 Foss-NIRSystems SY II spectrophotometer using a fiber optic probe. Remote reflectance was employed in the wavelength range of 400 to 2500 nm. After analyzing the spectroscopic data, discriminant models were obtained by means of partial least square (PLS) with 70% of the samples. The best models were then validated using 30% of the remaining samples. At least 98% of the international cork plank samples and 95% of the national samples were correctly classified in the calibration and validation stage. The best model for the cork stoppers was obtained for the top of the stoppers, with at least 90% of the samples being correctly classified. The results demonstrate the potential of VIS + NIRS technology as a rapid and accurate method for predicting the geographical origin of cork plank and stoppers
Resumo:
The era of the seed-cast grown monocrystalline-based silicon ingots is coming. Mono-like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost, high productivity and full square-shape that characterize the well-known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells.
Influence of origin of the beans on protein quality and nutritive value of commercial soybean meals.
Resumo:
Chemical composition and correlations between chemical analyses and protein quality of 454 batches of SBM of 3 different origins (USA, n=168; Brazil (BRA), n=139, and Argentine (ARG), n=147) were studied. Samples were collected during a 6-yr period. SBM from USA had more CP, sucrose and stachyose and less NDF (P<0.001) than SBM from ARG and BRA. CP content was negatively related (P<0.001) with sucrose for USA meals and with NDF for ARG and BRA meals. Also, P content was positively related (P<0.01) with CP content of the meals. PDI and KOH solubility were higher (P<0.001) for USA than for ARG or BRA SBM, values that were positively related (P<0.001) with trypsin inhibitor activity of the meals. In addition, USA meals had more lys, met+cys, thr, and trp than BRA and ARG meals (P < 0.001). Per unit of CP, lys content was negatively related (P<0.001) with CP content for USA, positively for BRA, and no relations was found for ARG meals. It is concluded that nutritive values and protein quality of the meals varied widely among soybean origins. Consequently, the origin of the beans should be considered in the evaluation of the nutritive value of commercial SBM for non-ruminant animals.
Resumo:
Estudio sobre la influencia del origen de los granos en la calidad de proteínas y el valor nutritivo de las harinas de soja comerciales
Resumo:
The Mt. Amiata volcano (Tuscany, central Italy) hosts the second largest geothermal field of Italy. Its SW and NE sectors are characterized by the presence of several CO2-rich (mayor que95% by vol.) gas discharges. An intense Hg mining activity had taken place from the 19th century up to the end of the ?70s, particularly close to Abbadia San Salvatore, during which two drillings (Acqua Passante and Ermeta) intercepted a CO2-rich gas fertile horizon. The related gases are emitted in the atmosphere since 1938 and 1959, respectively, causing severe concerns for the local air quality. In this work the results of a geochemical and isotopic survey carried out on these gas emissions from March 2009 to January 2014 are presented. CO2 fluxes from both the two wells and soil from an area of about 653,500 m2 located between them were measured. The two wells are emitting up to 15,000, 92 and 8 tons y-1 of CO2, CH4 and H2S, respectively, while the computed soil CO2 output was estimated at 4,311 ton y-1. The spatial distribution of the CO2 soil flux suggests the presence of preferential patterns, indicating sites of higher permeability. Since the local municipality is evaluating the possibility to plug the Ermeta vent, a temporarily closure should first be carried out to test the possible influence of this operation on the diffuse soil degassing of deep-originated CO2 in the surrounding area. This implies that diffuse soil gases should carefully be monitored before proceeding with its definitive closure.
Resumo:
After a criticism on today’s model for electrical noise in resistors, we pass to use a Quantum-compliant model based on the discreteness of electrical charge in a complex Admittance. From this new model we show that carrier drift viewed as charged particle motion in response to an electric field is unlike to occur in bulk regions of Solid-State devices where carriers react as dipoles against this field. The absence of the shot noise that charges drifting in resistors should produce and the evolution of the Phase Noise with the active power existing in the resonators of L-C oscillators, are two effects added in proof for this conduction model without carrier drift where the resistance of any two-terminal device becomes discrete and has a minimum value per carrier that is the Quantum resistance RK/(2pi)
Resumo:
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.
Resumo:
Se presentan los resultados de la investigación pedoantracológica en una catena del macizo dcentral de Gredos
Resumo:
Services in smart environments pursue to increase the quality of people?s lives. The most important issues when developing this kind of environments is testing and validating such services. These tasks usually imply high costs and annoying or unfeasible real-world testing. In such cases, artificial societies may be used to simulate the smart environment (i.e. physical environment, equipment and humans). With this aim, the CHROMUBE methodology guides test engineers when modeling human beings. Such models reproduce behaviors which are highly similar to the real ones. Originally, these models are based on automata whose transitions are governed by random variables. Automaton?s structure and the probability distribution functions of each random variable are determined by a manual test and error process. In this paper, it is presented an alternative extension of this methodology which avoids the said manual process. It is based on learning human behavior patterns automatically from sensor data by using machine learning techniques. The presented approach has been tested on a real scenario, where this extension has given highly accurate human behavior models,