1 resultado para Hastings, Warren, 1732-1818.
em Universidad Politécnica de Madrid
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (5)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (27)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Câmara dos Deputados (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (7)
- Bibloteca do Senado Federal do Brasil (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (8)
- Brock University, Canada (9)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (3)
- Center for Jewish History Digital Collections (28)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (50)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (18)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (12)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (12)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (46)
- Greenwich Academic Literature Archive - UK (12)
- Harvard University (120)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (15)
- Infoteca EMBRAPA (1)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (18)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (36)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (49)
- Queensland University of Technology - ePrints Archive (136)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (2)
- Repositorio Institucional de la Universidad Nacional Agraria (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (3)
- Universidad Autónoma de Nuevo León, Mexico (4)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Université de Montréal, Canada (2)
- University of Michigan (212)
- University of Queensland eSpace - Australia (2)
- USA Library of Congress (1)
Resumo:
Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.