16 resultados para HEMTS
em Universidad Politécnica de Madrid
Resumo:
Enhancement-mode (E-mode) high electron mobility transistors (HEMTs) based on a standard AlGaN/GaN heterostructure have been fabricated using two different methods: 19F implantation and fluorine-based plasma treatment. The need of a thermal annealing after both treatments has been proven in order to restore the ID and gm levels. DC characterization at high temperature has demonstrated that ID and gm decrease reversibly due to the reduction of the electron mobility and the drift velocity. Pulsed measurements (state period and variable pulse width) have been performed to study the self-heating effects.
Resumo:
—In this paper, application of a new technological solution for power switches based on Gallium Nitride and a filter design methodology for high efficiency Envelope Amplifier in RF transmitters are proposed. Comparing to Si MOSFETs, GaN HEMTs can provide higher efficiency of the Envelope Amplifier, due to better Figure Of Merit (lower product of on- resistance and gate charge). Benefits of their application were verified through the experimental results. The goal of the filter design is to generate the envelope reference with the minimum possible distortion and to improve the efficiency of the Amplifier, obtaining the optimum trade-off between conduction and switching losses.
Resumo:
In this paper, filter design methodology and application of GaN HEMTs for high efficiency Envelope Amplifier in RF transmitters are proposed. The main objectives of the filter design are generation of the envelope reference with the minimum possible distortion and high efficiency of the amplifier obtained by the optimum trade-off between conduction and switching losses. This optimum point was determined using power losses model for synchronous buck with sinusoidal output voltage and experimental results showed good correspondence with the model and verified the proposed methodology. On the other hand, comparing to Si MOSFETs, GaN HEMTs can provide higher efficiency of the envelope amplifier, due to superior conductivity and switching characteristics. Experimental results verified benefits of GaN devices comparing to the appliance of Si switching devices with very good Figure Of Merit, for this particular application
Resumo:
The AlGaN/GaN high-electron mobility transistors (HEMTs) have been considered as promising candidates for the next generation of high temperature, high frequency, high-power devices. The potential of GaN-based HEMTs may be improved using an AlInN barrier because of its better lattice match to GaN, resulting in higher sheet carrier densities without piezoelectric polarization [1]. This work has been focused on the study of AlInN HEMTs pulse and DC mode characterization at high temperature.
Resumo:
Reduced performance in Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. A new approach, termed “diamond-before-gate" is shown to improve the thermal budget of the deposition process and enables large area diamond without degrading the gate metal NCD capped devices had a 20% lower channel temperature at equivalent power dissipation.
Resumo:
GaN y AlN son materiales semiconductores piezoeléctricos del grupo III-V. La heterounión AlGaN/GaN presenta una elevada carga de polarización tanto piezoeléctrica como espontánea en la intercara, lo que genera en su cercanía un 2DEG de grandes concentración y movilidad. Este 2DEG produce una muy alta potencia de salida, que a su vez genera una elevada temperatura de red. Las tensiones de puerta y drenador provocan un stress piezoeléctrico inverso, que puede afectar a la carga de polarización piezoeléctrica y así influir la densidad 2DEG y las características de salida. Por tanto, la física del dispositivo es relevante para todos sus aspectos eléctricos, térmicos y mecánicos. En esta tesis se utiliza el software comercial COMSOL, basado en el método de elementos finitos (FEM), para simular el comportamiento integral electro-térmico, electro-mecánico y electro-térmico-mecánico de los HEMTs de GaN. Las partes de acoplamiento incluyen el modelo de deriva y difusión para el transporte electrónico, la conducción térmica y el efecto piezoeléctrico. Mediante simulaciones y algunas caracterizaciones experimentales de los dispositivos, hemos analizado los efectos térmicos, de deformación y de trampas. Se ha estudiado el impacto de la geometría del dispositivo en su auto-calentamiento mediante simulaciones electro-térmicas y algunas caracterizaciones eléctricas. Entre los resultados más sobresalientes, encontramos que para la misma potencia de salida la distancia entre los contactos de puerta y drenador influye en generación de calor en el canal, y así en su temperatura. El diamante posee une elevada conductividad térmica. Integrando el diamante en el dispositivo se puede dispersar el calor producido y así reducir el auto-calentamiento, al respecto de lo cual se han realizado diversas simulaciones electro-térmicas. Si la integración del diamante es en la parte superior del transistor, los factores determinantes para la capacidad disipadora son el espesor de la capa de diamante, su conductividad térmica y su distancia a la fuente de calor. Este procedimiento de disipación superior también puede reducir el impacto de la barrera térmica de intercara entre la capa adaptadora (buffer) y el substrato. La muy reducida conductividad eléctrica del diamante permite que pueda contactar directamente el metal de puerta (muy cercano a la fuente de calor), lo que resulta muy conveniente para reducir el auto-calentamiento del dispositivo con polarización pulsada. Por otra parte se simuló el dispositivo con diamante depositado en surcos atacados sobre el sustrato como caminos de disipación de calor (disipador posterior). Aquí aparece una competencia de factores que influyen en la capacidad de disipación, a saber, el surco atacado contribuye a aumentar la temperatura del dispositivo debido al pequeño tamaño del disipador, mientras que el diamante disminuiría esa temperatura gracias a su elevada conductividad térmica. Por tanto, se precisan capas de diamante relativamente gruesas para reducer ele efecto de auto-calentamiento. Se comparó la simulación de la deformación local en el borde de la puerta del lado cercano al drenador con estructuras de puerta estándar y con field plate, que podrían ser muy relevantes respecto a fallos mecánicos del dispositivo. Otras simulaciones se enfocaron al efecto de la deformación intrínseca de la capa de diamante en el comportamiento eléctrico del dispositivo. Se han comparado los resultados de las simulaciones de la deformación y las características eléctricas de salida con datos experimentales obtenidos por espectroscopía micro-Raman y medidas eléctricas, respectivamente. Los resultados muestran el stress intrínseco en la capa producido por la distribución no uniforme del 2DEG en el canal y la región de acceso. Además de aumentar la potencia de salida del dispositivo, la deformación intrínseca en la capa de diamante podría mejorar la fiabilidad del dispositivo modulando la deformación local en el borde de la puerta del lado del drenador. Finalmente, también se han simulado en este trabajo los efectos de trampas localizados en la superficie, el buffer y la barrera. Las medidas pulsadas muestran que tanto las puertas largas como las grandes separaciones entre los contactos de puerta y drenador aumentan el cociente entre la corriente pulsada frente a la corriente continua (lag ratio), es decir, disminuir el colapse de corriente (current collapse). Este efecto ha sido explicado mediante las simulaciones de los efectos de trampa de superficie. Por su parte, las referidas a trampas en el buffer se enfocaron en los efectos de atrapamiento dinámico, y su impacto en el auto-calentamiento del dispositivo. Se presenta también un modelo que describe el atrapamiento y liberación de trampas en la barrera: mientras que el atrapamiento se debe a un túnel directo del electrón desde el metal de puerta, el desatrapamiento consiste en la emisión del electrón en la banda de conducción mediante túnel asistido por fonones. El modelo también simula la corriente de puerta, debida a la emisión electrónica dependiente de la temperatura y el campo eléctrico. Además, también se ilustra la corriente de drenador dependiente de la temperatura y el campo eléctrico. ABSTRACT GaN and AlN are group III-V piezoelectric semiconductor materials. The AlGaN/GaN heterojunction presents large piezoelectric and spontaneous polarization charge at the interface, leading to high 2DEG density close to the interface. A high power output would be obtained due to the high 2DEG density and mobility, which leads to elevated lattice temperature. The gate and drain biases induce converse piezoelectric stress that can influence the piezoelectric polarization charge and further influence the 2DEG density and output characteristics. Therefore, the device physics is relevant to all the electrical, thermal, and mechanical aspects. In this dissertation, by using the commercial finite-element-method (FEM) software COMSOL, we achieved the GaN HEMTs simulation with electro-thermal, electro-mechanical, and electro-thermo-mechanical full coupling. The coupling parts include the drift-diffusion model for the electron transport, the thermal conduction, and the piezoelectric effect. By simulations and some experimental characterizations, we have studied the device thermal, stress, and traps effects described in the following. The device geometry impact on the self-heating was studied by electro-thermal simulations and electrical characterizations. Among the obtained interesting results, we found that, for same power output, the distance between the gate and drain contact can influence distribution of the heat generation in the channel and thus influence the channel temperature. Diamond possesses high thermal conductivity. Integrated diamond with the device can spread the generated heat and thus potentially reduce the device self-heating effect. Electro-thermal simulations on this topic were performed. For the diamond integration on top of the device (top-side heat spreading), the determinant factors for the heat spreading ability are the diamond thickness, its thermal conductivity, and its distance to the heat source. The top-side heat spreading can also reduce the impact of thermal boundary resistance between the buffer and the substrate on the device thermal behavior. The very low electrical conductivity of diamond allows that it can directly contact the gate metal (which is very close to the heat source), being quite convenient to reduce the self-heating for the device under pulsed bias. Also, the diamond coated in vias etched in the substrate as heat spreading path (back-side heat spreading) was simulated. A competing mechanism influences the heat spreading ability, i.e., the etched vias would increase the device temperature due to the reduced heat sink while the coated diamond would decrease the device temperature due to its higher thermal conductivity. Therefore, relative thick coated diamond is needed in order to reduce the self-heating effect. The simulated local stress at the gate edge of the drain side for the device with standard and field plate gate structure were compared, which would be relevant to the device mechanical failure. Other stress simulations focused on the intrinsic stress in the diamond capping layer impact on the device electrical behaviors. The simulated stress and electrical output characteristics were compared to experimental data obtained by micro-Raman spectroscopy and electrical characterization, respectively. Results showed that the intrinsic stress in the capping layer caused the non-uniform distribution of 2DEG in the channel and the access region. Besides the enhancement of the device power output, intrinsic stress in the capping layer can potentially improve the device reliability by modulating the local stress at the gate edge of the drain side. Finally, the surface, buffer, and barrier traps effects were simulated in this work. Pulsed measurements showed that long gates and distances between gate and drain contact can increase the gate lag ratio (decrease the current collapse). This was explained by simulations on the surface traps effect. The simulations on buffer traps effects focused on illustrating the dynamic trapping/detrapping in the buffer and the self-heating impact on the device transient drain current. A model was presented to describe the trapping and detrapping in the barrier. The trapping was the electron direct tunneling from the gate metal while the detrapping was the electron emission into the conduction band described by phonon-assisted tunneling. The reverse gate current was simulated based on this model, whose mechanism can be attributed to the temperature and electric field dependent electron emission in the barrier. Furthermore, the mechanism of the device bias via the self-heating and electric field impact on the electron emission and the transient drain current were also illustrated.
Resumo:
Los transistores de alta movilidad electrónica basados en GaN han sido objeto de una extensa investigación ya que tanto el GaN como sus aleaciones presentan unas excelentes propiedades eléctricas (alta movilidad, elevada concentración de portadores y campo eléctrico crítico alto). Aunque recientemente se han incluido en algunas aplicaciones comerciales, su expansión en el mercado está condicionada a la mejora de varios asuntos relacionados con su rendimiento y habilidad. Durante esta tesis se han abordado algunos de estos aspectos relevantes; por ejemplo, la fabricación de enhancement mode HEMTs, su funcionamiento a alta temperatura, el auto calentamiento y el atrapamiento de carga. Los HEMTs normalmente apagado o enhancement mode han atraído la atención de la comunidad científica dedicada al desarrollo de circuitos amplificadores y conmutadores de potencia, ya que su utilización disminuiría significativamente el consumo de potencia; además de requerir solamente una tensión de alimentación negativa, y reducir la complejidad del circuito y su coste. Durante esta tesis se han evaluado varias técnicas utilizadas para la fabricación de estos dispositivos: el ataque húmedo para conseguir el gate-recess en heterostructuras de InAl(Ga)N/GaN; y tratamientos basados en flúor (plasma CF4 e implantación de F) de la zona debajo de la puerta. Se han llevado a cabo ataques húmedos en heteroestructuras de InAl(Ga)N crecidas sobre sustratos de Si, SiC y zafiro. El ataque completo de la barrera se consiguió únicamente en las muestras con sustrato de Si. Por lo tanto, se puede deducir que la velocidad de ataque depende de la densidad de dislocaciones presentes en la estructura, ya que el Si presenta un peor ajuste del parámetro de red con el GaN. En relación a los tratamientos basados en flúor, se ha comprobado que es necesario realizar un recocido térmico después de la fabricación de la puerta para recuperar la heteroestructura de los daños causados durante dichos tratamientos. Además, el estudio de la evolución de la tensión umbral con el tiempo de recocido ha demostrado que en los HEMTs tratados con plasma ésta tiende a valores más negativos al aumentar el tiempo de recocido. Por el contrario, la tensión umbral de los HEMTs implantados se desplaza hacia valores más positivos, lo cual se atribuye a la introducción de iones de flúor a niveles más profundos de la heterostructura. Los transistores fabricados con plasma presentaron mejor funcionamiento en DC a temperatura ambiente que los implantados. Su estudio a alta temperatura ha revelado una reducción del funcionamiento de todos los dispositivos con la temperatura. Los valores iniciales de corriente de drenador y de transconductancia medidos a temperatura ambiente se recuperaron después del ciclo térmico, por lo que se deduce que dichos efectos térmicos son reversibles. Se han estudiado varios aspectos relacionados con el funcionamiento de los HEMTs a diferentes temperaturas. En primer lugar, se han evaluado las prestaciones de dispositivos de AlGaN/GaN sobre sustrato de Si con diferentes caps: GaN, in situ SiN e in situ SiN/GaN, desde 25 K hasta 550 K. Los transistores con in situ SiN presentaron los valores más altos de corriente drenador, transconductancia, y los valores más bajos de resistencia-ON, así como las mejores características en corte. Además, se ha confirmado que dichos dispositivos presentan gran robustez frente al estrés térmico. En segundo lugar, se ha estudiado el funcionamiento de transistores de InAlN/GaN con diferentes diseños y geometrías. Dichos dispositivos presentaron una reducción casi lineal de los parámetros en DC en el rango de temperaturas de 25°C hasta 225°C. Esto se debe principalmente a la dependencia térmica de la movilidad electrónica, y también a la reducción de la drift velocity con la temperatura. Además, los transistores con mayores longitudes de puerta mostraron una mayor reducción de su funcionamiento, lo cual se atribuye a que la drift velocity disminuye más considerablemente con la temperatura cuando el campo eléctrico es pequeño. De manera similar, al aumentar la distancia entre la puerta y el drenador, el funcionamiento del HEMT presentó una mayor reducción con la temperatura. Por lo tanto, se puede deducir que la degradación del funcionamiento de los HEMTs causada por el aumento de la temperatura depende tanto de la longitud de la puerta como de la distancia entre la puerta y el drenador. Por otra parte, la alta densidad de potencia generada en la región activa de estos transistores conlleva el auto calentamiento de los mismos por efecto Joule, lo cual puede degradar su funcionamiento y Habilidad. Durante esta tesis se ha desarrollado un simple método para la determinación de la temperatura del canal basado en medidas eléctricas. La aplicación de dicha técnica junto con la realización de simulaciones electrotérmicas han posibilitado el estudio de varios aspectos relacionados con el autocalentamiento. Por ejemplo, se han evaluado sus efectos en dispositivos sobre Si, SiC, y zafiro. Los transistores sobre SiC han mostrado menores efectos gracias a la mayor conductividad térmica del SiC, lo cual confirma el papel clave que desempeña el sustrato en el autocalentamiento. Se ha observado que la geometría del dispositivo tiene cierta influencia en dichos efectos, destacando que la distribución del calor generado en la zona del canal depende de la distancia entre la puerta y el drenador. Además, se ha demostrado que la temperatura ambiente tiene un considerable impacto en el autocalentamiento, lo que se atribuye principalmente a la dependencia térmica de la conductividad térmica de las capas y sustrato que forman la heterostructura. Por último, se han realizado numerosas medidas en pulsado para estudiar el atrapamiento de carga en HEMTs sobre sustratos de SiC con barreras de AlGaN y de InAlN. Los resultados obtenidos en los transistores con barrera de AlGaN han presentado una disminución de la corriente de drenador y de la transconductancia sin mostrar un cambio en la tensión umbral. Por lo tanto, se puede deducir que la posible localización de las trampas es la región de acceso entre la puerta y el drenador. Por el contrario, la reducción de la corriente de drenador observada en los dispositivos con barrera de InAlN llevaba asociado un cambio significativo en la tensión umbral, lo que implica la existencia de trampas situadas en la zona debajo de la puerta. Además, el significativo aumento del valor de la resistencia-ON y la degradación de la transconductancia revelan la presencia de trampas en la zona de acceso entre la puerta y el drenador. La evaluación de los efectos del atrapamiento de carga en dispositivos con diferentes geometrías ha demostrado que dichos efectos son menos notables en aquellos transistores con mayor longitud de puerta o mayor distancia entre puerta y drenador. Esta dependencia con la geometría se puede explicar considerando que la longitud y densidad de trampas de la puerta virtual son independientes de las dimensiones del dispositivo. Finalmente se puede deducir que para conseguir el diseño óptimo durante la fase de diseño no sólo hay que tener en cuenta la aplicación final sino también la influencia que tiene la geometría en los diferentes aspectos estudiados (funcionamiento a alta temperatura, autocalentamiento, y atrapamiento de carga). ABSTRACT GaN-based high electron mobility transistors have been under extensive research due to the excellent electrical properties of GaN and its related alloys (high carrier concentration, high mobility, and high critical electric field). Although these devices have been recently included in commercial applications, some performance and reliability issues need to be addressed for their expansion in the market. Some of these relevant aspects have been studied during this thesis; for instance, the fabrication of enhancement mode HEMTs, the device performance at high temperature, the self-heating and the charge trapping. Enhancement mode HEMTs have become more attractive mainly because their use leads to a significant reduction of the power consumption during the stand-by state. Moreover, they enable the fabrication of simpler power amplifier circuits and high-power switches because they allow the elimination of negativepolarity voltage supply, reducing significantly the circuit complexity and system cost. In this thesis, different techniques for the fabrication of these devices have been assessed: wet-etching for achieving the gate-recess in InAl(Ga)N/GaN devices and two different fluorine-based treatments (CF4 plasma and F implantation). Regarding the wet-etching, experiments have been carried out in InAl(Ga)N/GaN grown on different substrates: Si, sapphire, and SiC. The total recess of the barrier was achieved after 3 min of etching in devices grown on Si substrate. This suggests that the etch rate can critically depend on the dislocations present in the structure, since the Si exhibits the highest mismatch to GaN. Concerning the fluorine-based treatments, a post-gate thermal annealing was required to recover the damages caused to the structure during the fluorine-treatments. The study of the threshold voltage as a function of this annealing time has revealed that in the case of the plasma-treated devices it become more negative with the time increase. On the contrary, the threshold voltage of implanted HEMTs showed a positive shift when the annealing time was increased, which is attributed to the deep F implantation profile. Plasma-treated HEMTs have exhibited better DC performance at room temperature than the implanted devices. Their study at high temperature has revealed that their performance decreases with temperature. The initial performance measured at room temperature was recovered after the thermal cycle regardless of the fluorine treatment; therefore, the thermal effects were reversible. Thermal issues related to the device performance at different temperature have been addressed. Firstly, AlGaN/GaN HEMTs grown on Si substrate with different cap layers: GaN, in situ SiN, or in situ SiN/GaN, have been assessed from 25 K to 550 K. In situ SiN cap layer has been demonstrated to improve the device performance since HEMTs with this cap layer have exhibited the highest drain current and transconductance values, the lowest on-resistance, as well as the best off-state characteristics. Moreover, the evaluation of thermal stress impact on the device performance has confirmed the robustness of devices with in situ cap. Secondly, the high temperature performance of InAlN/GaN HEMTs with different layouts and geometries have been assessed. The devices under study have exhibited an almost linear reduction of the main DC parameters operating in a temperature range from room temperature to 225°C. This was mainly due to the thermal dependence of the electron mobility, and secondly to the drift velocity decrease with temperature. Moreover, HEMTs with large gate length values have exhibited a great reduction of the device performance. This was attributed to the greater decrease of the drift velocity for low electric fields. Similarly, the increase of the gate-to-drain distance led to a greater reduction of drain current and transconductance values. Therefore, this thermal performance degradation has been found to be dependent on both the gate length and the gate-to-drain distance. It was observed that the very high power density in the active region of these transistors leads to Joule self-heating, resulting in an increase of the device temperature, which can degrade the device performance and reliability. A simple electrical method have been developed during this work to determine the channel temperature. Furthermore, the application of this technique together with the performance of electro-thermal simulations have enabled the evaluation of different aspects related to the self-heating. For instance, the influence of the substrate have been confirmed by the study of devices grown on Si, SiC, and Sapphire. HEMTs grown on SiC substrate have been confirmed to exhibit the lowest self-heating effects thanks to its highest thermal conductivity. In addition to this, the distribution of the generated heat in the channel has been demonstrated to be dependent on the gate-to-drain distance. Besides the substrate and the geometry of the device, the ambient temperature has also been found to be relevant for the self-heating effects, mainly due to the temperature-dependent thermal conductivity of the layers and the substrate. Trapping effects have been evaluated by means of pulsed measurements in AlGaN and InAIN barrier devices. AlGaN barrier HEMTs have exhibited a de crease in drain current and transconductance without measurable threshold voltage change, suggesting the location of the traps in the gate-to-drain access region. On the contrary, InAIN barrier devices have showed a drain current associated with a positive shift of threshold voltage, which indicated that the traps were possibly located under the gate region. Moreover, a significant increase of the ON-resistance as well as a transconductance reduction were observed, revealing the presence of traps on the gate-drain access region. On the other hand, the assessment of devices with different geometries have demonstrated that the trapping effects are more noticeable in devices with either short gate length or the gate-to-drain distance. This can be attributed to the fact that the length and the trap density of the virtual gate are independent on the device geometry. Finally, it can be deduced that besides the final application requirements, the influence of the device geometry on the performance at high temperature, on the self-heating, as well as on the trapping effects need to be taken into account during the device design stage to achieve the optimal layout.
Resumo:
GaN based high electron mobility transistors have draw great attention due to its potential in high temperature, high power and high frequency applications [1, 2]. However, significant gate leakage current is still one of the issues which need to be solved to improve the performance and reliability of the devices [3]. Several research groups have contributed to solve this problem by using metal–oxide–semiconductor HEMTs (MOSHEMTs), with a thin dielectric layer, such as SiO2 [4], Al2O3 [5], HfO2 [6] and Gd2O3 [7] between the gate and the barrier layer on AlGaN/GaN heterostructures. Gd2O3 has shown low interfacial density of states(Dit) with GaN and a high dielectric constant and low electrical leakage currents [8], thus is considered as a promising candidate for the gate dielectrics on GaN. MOS-HEMTs using Gd2O3 grown by electron-beam heating [7] or molecular beam epitaxy (MBE) [8] on GaN or AlGan/GaN structure have been investigated, but further research is still needed in Gd2O3 based AlGaN/GaN MOSHEMTs.
Resumo:
PAPER Trapping phenomena in AlGaN and InAlN barrier HEMTs with different geometries S Martin-Horcajo1, A Wang1, A Bosca1, M F Romero1, M J Tadjer1,2, A D Koehler2, T J Anderson2 and F Calle1 Published 11 February 2015 • © 2015 IOP Publishing Ltd Semiconductor Science and Technology, Volume 30, Number 3 Article PDF Figures References Citations Metrics 350 Total downloads Cited by 1 articles Export citation and abstract BibTeX RIS Turn on MathJax Share this article Article information Abstract Trapping effects were evaluated by means of pulsed measurements under different quiescent biases for GaN/AlGaN/GaN and GaN/InAlN/GaN. It was found that devices with an AlGaN barrier underwent an increase in the on-resistance, and a drain current and transconductance reduction without measurable threshold voltage change, suggesting the location of the traps in the gate-drain access region. In contrast, devices with an InAlN barrier showed a transconductance and a decrease in drain associated with a significant positive shift of threshold voltage, indicating that the traps were likely located under the gate region; as well as an on-resistance degradation probably associated with the presence of surface traps in the gate-drain access region. Furthermore, measurements of drain current transients at different ambient temperatures revealed that the activation energy of electron traps was 0.43 eV and 0.38 eV for AlGaN and InAlN barrier devices, respectively. Experimental and simulation results demonstrated the influence of device geometry on the observed trapping effects, since devices with larger gate lengths and gate-to-drain distance values exhibited less noticeable charge trapping effects.
Resumo:
AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy.
Resumo:
urface treatments have been recently shown to play an active role in electrical characteristics in AlGaN/GaN HEMTs, in particular during the passivation processing [1-4]. However, the responsible mechanisms are partially unknown and further studies are demanding. The effects of power and time N2 plasma pre-treatment prior to SiN deposition using PE-CVD (plasma enhanced chemical vapour deposition) on GaN and AlGaN/GaN HEMT have been investigated. The low power (60 W) plasma pre-treatment was found to improve the electronic characteristics in GaN based HEMT devices, independently of the time duration up to 20 min. In contrast, high power (150 and 210 W) plasma pretreatment showed detrimental effects in the electronic properties (Fig. 1), increasing the sheet resistance of the 2DEG, decreasing the 2DEG charge density in AlGaN/GaN HEMTs, transconductance reduction and decreasing the fT and fmax values up to 40% respect to the case using 60 W N2 plasma power. Although AFM (atomic force microscopy) results showed AlGaN and GaN surface roughness is not strongly affected by the N2-plasma, KFM (Kelvin force microscopy) surface analysis shows significant changes in the surface potential, trending to increase its values as the plasma power is higher. The whole results point at energetic ions inducing polarization-charge changes that affect dramatically to the 2-DEG charge density and the final characteristics of the HEMT devices. Therefore, we conclude that AlGaN surface is strongly sensitive to N2 plasma power conditions, which turn to be a key factor to achieve a good surface preparation prior to SiN passivation.
Resumo:
Esta memoria está basada en el crecimiento y caracterización de heteroestructuras Al(Ga)N/GaN y nanocolumnas ordenadas de GaN, y su aplicación en sensores químicos. El método de crecimiento ha sido la epitaxia de haces moleculares asistida por plasma (PAMBE). En el caso de las heteroestructuras Al(Ga)N/GaN, se han crecido barreras de distinto espesor y composición, desde AlN de 5 nm, hasta AlGaN de 35 nm. Además de una caracterización morfológica, estructural y eléctrica básica de las capas, también se han fabricado a partir de ellas dispositivos tipo HEMTs. La caracterización eléctrica de dichos dispositivos (carga y movilidad de en el canal bidimensional) indica que las mejores heteroestructuras son aquellas con un espesor de barrera intermedio (alrededor de 20 nm). Sin embargo, un objetivo importante de esta Tesis ha sido verificar las ventajas que podían tener los sensores basados en heteroestructuras AlN/GaN (frente a los típicos basados en AlGaN/GaN), con espesores de barrera muy finos (alrededor de 5 nm), ya que el canal de conducción que se modula por efecto de cambios químicos está más cerca de la superficie en donde ocurren dichos cambios químicos. De esta manera, se han utilizado los dispositivos tipo HEMTs como sensores químicos de pH (ISFETs), y se ha comprobado la mayor sensibilidad (variación de corriente frente a cambios de pH, Ids/pH) en los sensores basados en AlN/GaN frente a los basados en AlGaN/GaN. La mayor sensibilidad es incluso más patente en aplicaciones en las que no se utiliza un electrodo de referencia. Se han fabricado y caracterizado dispositivos ISFET similares utilizando capas compactas de InN. Estos sensores presentan peor estabilidad que los basados en Al(Ga)N/GaN, aunque la sensibilidad superficial al pH era la misma (Vgs/pH), y su sensibilidad en terminos de corriente de canal (Ids/pH) arroja valores intermedios entre los ISFET basados en AlN/GaN y los valores de los basados en AlGaN/GaN. Para continuar con la comparación entre dispositivos basados en Al(Ga)N/GaN, se fabricaron ISFETs con el área sensible más pequeña (35 x 35 m2), de tamaño similar a los dispositivos destinados a las medidas de actividad celular. Sometiendo los dispositivos a pulsos de voltaje en su área sensible, la respuesta de los dispositivos de AlN presentaron menor ruido que los basados en AlGaN. El ruido en la corriente para dispositivos de AlN, donde el encapsulado no ha sido optimizado, fue tan bajo como 8.9 nA (valor rms), y el ruido equivalente en el potencial superficial 38.7 V. Estos valores son más bajos que los encontrados en los dispositivos típicos para la detección de actividad celular (basados en Si), y del orden de los mejores resultados encontrados en la literatura sobre AlGaN/GaN. Desde el punto de vista de la caracterización electro-química de las superficies de GaN e InN, se ha determinado su punto isoeléctrico. Dicho valor no había sido reportado en la literatura hasta el momento. El valor, determinado por medidas de “streaming potential”, es de 4.4 y 4 respectivamente. Este valor es una importante característica a tener en cuenta en sensores, en inmovilización electrostática o en la litografía coloidal. Esta última técnica se discute en esta memoria, y se aplica en el último bloque de investigación de esta Tesis (i.e. crecimiento ordenado). El último apartado de resultados experimentales de esta Tesis analiza el crecimiento selectivo de nanocolumnas ordenadas de GaN por MBE, utilizando mascaras de Ti con nanoagujeros. Se ha estudiado como los distintos parámetros de crecimiento (i.e. flujos de los elementos Ga y N, temperatura de crecimiento y diseño de la máscara) afectan a la selectividad y a la morfología de las nanocolumnas. Se ha conseguido con éxito el crecimiento selectivo sobre pseudosustratos de GaN con distinta orientación cristalina o polaridad; templates de GaN(0001)/zafiro, GaN(0001)/AlN/Si, GaN(000-1)/Si y GaN(11-20)/zafiro. Se ha verificado experimentalmente la alta calidad cristalina de las nanocolumnas ordenadas, y su mayor estabilidad térmica comparada con las capas compactas del mismo material. Las nanocolumnas ordenadas de nitruros del grupo III tienen una clara aplicación en el campo de la optoelectrónica, principalmente para nanoemisores de luz blanca. Sin embargo, en esta Tesis se proponen como alternativa a la utilización de capas compactas o nanocolumnas auto-ensambladas en sensores. Las nanocolumnas auto-ensambladas de GaN, debido a su alta razón superficie/volumen, son muy prometedoras en el campo de los sensores, pero su amplia dispersión en dimensiones (altura y diámetro) supone un problema para el procesado y funcionamiento de dispositivos reales. En ese aspecto, las nanocolumnas ordenadas son más robustas y homogéneas, manteniendo una alta relación superficie/volumen. Como primer experimento en el ámbito de los sensores, se ha estudiado como se ve afectada la emisión de fotoluminiscencia de las NCs ordenadas al estar expuestas al aire o al vacio. Se observa una fuerte caída en la intensidad de la fotoluminiscencia cuando las nanocolumnas están expuestas al aire (probablemente por la foto-adsorción de oxigeno en la superficie), como ya había sido documentado anteriormente en nanocolumnas auto-ensambladas. Este experimento abre el camino para futuros sensores basados en nanocolumnas ordenadas. Abstract This manuscript deals with the growth and characterization of Al(Ga)N/GaN heterostructures and GaN ordered nanocolumns, and their application in chemical sensors. The growth technique has been the plasma-assisted molecular beam epitaxy (PAMBE). In the case of Al(Ga)N/GaN heterostructures, barriers of different thickness and composition, from AlN (5 nm) to AlGaN (35 nm) have been grown. Besides the basic morphological, structural and electrical characterization of the layers, HEMT devices have been fabricated based on these layers. The best electrical characteristics (larger carriers concentration and mobility in the two dimensional electron gas) are those in AlGaN/GaN heterostructures with a medium thickness (around 20 nm). However, one of the goals of this Thesis has been to verify the advantages that sensors based on AlN/GaN (thickness around 7 nm) have compared to standard AlGaN/GaN, because the conduction channel to be modulated by chemical changes is closer to the sensitive area. In this way, HEMT devices have been used as chemical pH sensors (ISFETs), and the higher sensitivity (conductance change related to pH changes, Ids/pH) of AlN/GaN based sensors has been proved. The higher sensibility is even more obvious in application without reference electrode. Similar ISFETs devices have been fabricated based on InN compact layers. These devices show a poor stability, but its surface sensitivity to pH (Vgs/pH) and its sensibility (Ids/pH) yield values between the corresponding ones of AlN/GaN and AlGaN/GaN heterostructures. In order to a further comparison between Al(Ga)N/GaN based devices, ISFETs with smaller sensitive area (35 x 35 m2), similar to the ones used in cellular activity record, were fabricated and characterized. When the devices are subjected to a voltage pulse through the sensitive area, the response of AlN based devices shows lower noise than the ones based on AlGaN. The noise in the current of such a AlN based device, where the encapsulation has not been optimized, is as low as 8.9 nA (rms value), and the equivalent noise to the surface potential is 38.7 V. These values are lower than the found in typical devices used for cellular activity recording (based on Si), and in the range of the best published results on AlGaN/GaN. From the point of view of the electrochemical characterization of GaN and InN surfaces, their isoelectric point has been experimentally determined. Such a value is the first time reported for GaN and InN surfaces. These values are determined by “streaming potential”, being pH 4.4 and 4, respectively. Isoelectric point value is an important characteristic in sensors, electrostatic immobilization or in colloidal lithography. In particular, colloidal lithography has been optimized in this Thesis for GaN surfaces, and applied in the last part of experimental results (i.e. ordered growth). The last block of this Thesis is focused on the selective area growth of GaN nanocolumns by MBE, using Ti masks decorated with nanoholes. The effect of the different growth parameters (Ga and N fluxes, growth temperature and mask design) is studied, in particular their impact in the selectivity and in the morphology of the nanocolumns. Selective area growth has been successful performed on GaN templates with different orientation or polarity; GaN(0001)/sapphire, GaN(0001)/AlN/Si, GaN(000- 1)/Si and GaN(11-20)/sapphire. Ordered nanocolumns exhibit a high crystal quality, and a higher thermal stability (lower thermal decomposition) than the compact layers of the same material. Ordered nanocolumns based on III nitrides have a clear application in optoelectronics, mainly for white light nanoemitters. However, this Thesis proposes them as an alternative to compact layers and self-assembled nanocolumns in sensor applications. Self-assembled GaN nanocolumns are very appealing for sensor applications, due to their large surface/volume ratio. However, their large dispersion in heights and diameters are a problem in terms of processing and operation of real devices. In this aspect, ordered nanocolumns are more robust and homogeneous, keeping the large surface/volume ratio. As first experimental evidence of their sensor capabilities, ordered nanocolumns have been studied regarding their photoluminiscence on air and vacuum ambient. A big drop in the intensity is observed when the nanocolumns are exposed to air (probably because of the oxygen photo-adsortion), as was already reported in the case of self-assembled nanocolumns. This opens the way to future sensors based on ordered III nitrides nanocolumns.
Resumo:
As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a "gate after diamond" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.
Resumo:
El objetivo principal del presente trabajo es estudiar y explotar estructuras que presentan un gas bidimensional de electrones (2DEG) basadas en compuestos nitruros con alto contenido de indio. Existen muchas preguntas abiertas, relacionadas con el nitruro de indio y sus aleaciones, algunas de las cuales se han abordado en este estudio. En particular, se han investigado temas relacionados con el análisis y la tecnología del material, tanto para el InN y heteroestructuras de InAl(Ga)N/GaN como para sus aplicaciones a dispositivos avanzados. Después de un análisis de la dependencia de las propiedades del InN con respecto a tratamientos de procesado de dispositivos (plasma y térmicos), el problema relacionado con la formación de un contacto rectificador es considerado. Concretamente, su dificultad es debida a la presencia de acumulación de electrones superficiales en la forma de un gas bidimensional de electrones, debido al pinning del nivel de Fermi. El uso de métodos electroquímicos, comparados con técnicas propias de la microelectrónica, ha ayudado para la realización de esta tarea. En particular, se ha conseguido lamodulación de la acumulación de electrones con éxito. En heteroestructuras como InAl(Ga)N/GaN, el gas bidimensional está presente en la intercara entre GaN y InAl(Ga)N, aunque no haya polarización externa (estructuras modo on). La tecnología relacionada con la fabricación de transistores de alta movilidad en modo off (E-mode) es investigada. Se utiliza un método de ataque húmedo mediante una solución de contenido alcalino, estudiando las modificaciones estructurales que sufre la barrera. En este sentido, la necesidad de un control preciso sobre el material atacado es fundamental para obtener una estructura recessed para aplicaciones a transistores, con densidad de defectos e inhomogeneidad mínimos. La dependencia de la velocidad de ataque de las propiedades de las muestras antes del tratamiento es observada y comentada. Se presentan también investigaciones relacionadas con las propiedades básicas del InN. Gracias al uso de una puerta a través de un electrolito, el desplazamiento de los picos obtenidos por espectroscopia Raman es correlacionado con una variación de la densidad de electrones superficiales. En lo que concierne la aplicación a dispositivos, debido al estado de la tecnología actual y a la calidad del material InN, todavía no apto para dispositivos, la tesis se enfoca a la aplicación de heteroestructuras de InAl(Ga)N/GaN. Gracias a las ventajas de una barrera muy fina, comparada con la tecnología de AlGaN/GaN, el uso de esta estructura es adecuado para aplicaciones que requieren una elevada sensibilidad, estando el canal 2DEG más cerca de la superficie. De hecho, la sensibilidad obtenida en sensores de pH es comparable al estado del arte en términos de variaciones de potencial superficial, y, debido al poco espesor de la barrera, la variación de la corriente con el pH puede ser medida sin necesidad de un electrodo de referencia externo. Además, estructuras fotoconductivas basadas en un gas bidimensional presentan alta ganancia debida al elevado campo eléctrico en la intercara, que induce una elevada fuerza de separación entre hueco y electrón generados por absorción de luz. El uso de metalizaciones de tipo Schottky (fotodiodos Schottky y metal-semiconductormetal) reduce la corriente de oscuridad, en comparación con los fotoconductores. Además, la barrera delgada aumenta la eficiencia de extracción de los portadores. En consecuencia, se obtiene ganancia en todos los dispositivos analizados basados en heteroestructuras de InAl(Ga)N/GaN. Aunque presentando fotoconductividad persistente (PPC), los dispositivos resultan más rápidos con respeto a los valores que se dan en la literatura acerca de PPC en sistemas fotoconductivos. ABSTRACT The main objective of the present work is to study and exploit the two-dimensionalelectron- gas (2DEG) structures based on In-related nitride compounds. Many open questions are analyzed. In particular, technology and material-related topics are the focus of interest regarding both InNmaterial and InAl(Ga)N/GaNheterostructures (HSs) as well as their application to advanced devices. After the analysis of the dependence of InN properties on processing treatments (plasma-based and thermal), the problemof electrical blocking behaviour is taken into consideration. In particular its difficulty is due to the presence of a surface electron accumulation (SEA) in the form of a 2DEG, due to Fermi level pinning. The use of electrochemical methods, compared to standard microelectronic techniques, helped in the successful realization of this task. In particular, reversible modulation of SEA is accomplished. In heterostructures such as InAl(Ga)N/GaN, the 2DEGis present at the interface between GaN and InAl(Ga)N even without an external bias (normally-on structures). The technology related to the fabrication of normally off (E-mode) high-electron-mobility transistors (HEMTs) is investigated in heterostructures. An alkali-based wet-etching method is analysed, standing out the structural modifications the barrier underwent. The need of a precise control of the etched material is crucial, in this sense, to obtain a recessed structure for HEMT application with the lowest defect density and inhomogeneity. The dependence of the etch rate on the as-grown properties is observed and commented. Fundamental investigation related to InNis presented, related to the physics of this degeneratematerial. With the help of electrolyte gating (EG), the shift in Raman peaks is correlated to a variation in surface eletron density. As far as the application to device is concerned, due to the actual state of the technology and material quality of InN, not suitable for working devices yet, the focus is directed to the applications of InAl(Ga)N/GaN HSs. Due to the advantages of a very thin barrier layer, compared to standard AlGaN/GaN technology, the use of this structure is suitable for high sensitivity applications being the 2DEG channel closer to the surface. In fact, pH sensitivity obtained is comparable to the state-of-the-art in terms of surface potential variations, and, due to the ultrathin barrier, the current variation with pH can be recorded with no need of the external reference electrode. Moreover, 2DEG photoconductive structures present a high photoconductive gain duemostly to the high electric field at the interface,and hence a high separation strength of photogenerated electron and hole. The use of Schottky metallizations (Schottky photodiode and metal-semiconductor-metal) reduce the dark current, compared to photoconduction, and the thin barrier helps to increase the extraction efficiency. Gain is obtained in all the device structures investigated. The devices, even if they present persistent photoconductivity (PPC), resulted faster than the standard PPC related decay values.
Resumo:
In this paper, implementation and testing of non- commercial GaN HEMT in a simple buck converter for envelope amplifier in ET and EER transmission techn iques has been done. Comparing to the prototypes with commercially available EPC1014 and 1015 GaN HEMTs, experimentally demonstrated power supply provided better thermal management and increased the switching frequency up to 25MHz. 64QAM signal with 1MHz of large signal bandw idth and 10.5dB of Peak to Average Power Ratio was gener ated, using the switching frequency of 20MHz. The obtaine defficiency was 38% including the driving circuit an d the total losses breakdown showed that switching power losses in the HEMT are the dominant ones. In addition to this, some basic physical modeling has been done, in order to provide an insight on the correlation between the electrical characteristics of the GaN HEMT and physical design parameters. This is the first step in the optimization of the HEMT design for this particular application.