30 resultados para Golden Retriever
em Universidad Politécnica de Madrid
Resumo:
El sector nacional de frutos de pepita debe incrementar sus esfuerzos por mejorar la calidad de la fruta en lo relativo a los daños mecánicos, según concluye este estudio realizado en 72 comercios minoristas de Madrid.
Resumo:
Se han realizado tres ensayos con manzanas del cv. "Golden Delicious" procedentes de Lérida que diferían en sus tratamientos de calcio, siempre manteniendo un testigo sin tratar. En un primer ensayo se comparan manzanas tratadas con no tratadas; en el segundo se comparan manzanas tratadas en pre y post cosecha y en un tercero se comparan tratamientos en precosecha con CaCl2 y quelatos. Todos los frutos han sido sometidos a ensayos de impacto, corte y penetración. Se discute la posibilidad de que estos tratamientos mejoren la resistencia a los daños y la calidad.
Resumo:
El riego, práctica habitual y a la vez indispensable de nuestra fruticultura constituye, en su manejo, uno de los principales factores determinantes de la producción y calidad final del fruto, y sobre el cual el agricultor desempeña un papel indispensable como regulador. A este respecto hay varios estudios que entre si presentan conclusiones dispares. El hecho de aumentar la frecuencia y dosis de riego provoca, según varios autores, una disminución en la firmeza de las manzanas (Asaf et al., 1975), mientras que en otras investigaciones se observa el fenómeno contrario (Reichel y Schmidt, 1983). También hay estudios con resultados dispares en relación al efecto que el riego pueda tener en la acidez titulable y el contenido en sólidos solubles del fruto. No obstante, parece ser que una restricción de riego en precosecha se traduce en un aumento de los sólidos solubles de los frutos (Ramos et al., 1993) y en una disminución de su acidez (Recasens et al., 1988). La fecha de recolección también es un factor muy importante en vistas a una optimización tanto de rendimientos de la plantación como de la aptitud del fruto para su frigoconservación. Recolectar un mismo fruto una semana más tarde implica una pérdida de firmeza durante su frigoconservación de aproximadamente 1,5 N por mes, pasando de unas pérdidas mensuales de 3 N a 4,5 N según se haga la recolección en el momento optimo o después (Duran, 1990). Es este acumulo de discrepancias el que ha motivado el planteamiento de este ensayo para nuestras propias condiciones de cultivo. En él se pretende ver si diferentes fechas de recolección y condiciones de riego pueden influir en la firmeza de los frutos y por tanto en su sensibilidad a la manipulación, aspecto de gran interés en el momento de la cosecha. Asimismo es preciso comprobar que estas prácticas culturales no afecten a la calidad del fruto.
Resumo:
SRAM-based FPGAs are sensitive to radiation effects. Soft errors can appear and accumulate, potentially defeating mitigation strategies deployed at the Application Layer. Therefore, Configuration Memory scrubbing is required to improve radiation tolerance of such FPGAs in space applications. Virtex FPGAs allow runtime scrubbing by means of dynamic partial reconfiguration. Even with scrubbing, intra-FPGA TMR systems are subjected to common-mode errors affecting more than one design domain. This is solved in inter-FPGA TMR systems at the expense of a higher cost, power and mass. In this context, a self-reference scrubber for device-level TMR system based on Xilinx Virtex FPGAs is presented. This scrubber allows for a fast SEU/MBU detection and correction by peer frame comparison without needing to access a golden configuration memory
Resumo:
El impacto negativo que tienen los virus en las plantas hace que estos puedan ejercer un papel ecológico como moduladores de la dinámica espacio-temporal de las poblaciones de sus huéspedes. Entender cuáles son los mecanismos genéticos y los factores ambientales que determinan tanto la epidemiología como la estructura genética de las poblaciones de virus puede resultar de gran ayuda para la comprensión del papel ecológico de las infecciones virales. Sin embargo, existen pocos trabajos experimentales que hayan abordado esta cuestión. En esta tesis, se analiza el efecto de la heterogeneidad del paisaje sobre la incidencia de los virus y la estructura genética de sus poblaciones. Asimismo, se explora como dichos factores ambientales influyen en la importancia relativa que los principales mecanismos de generación de variabilidad genética (mutación, recombinación y migración) tienen en la evolución de los virus. Para ello se ha usado como sistema los begomovirus que infectan poblaciones de chiltepín (Capsicum annuum var. aviculare (Dierbach) D´Arcy & Eshbaugh) en México. Se analizó la incidencia de diferentes virus en poblaciones de chiltepín distribuidas a lo largo de seis provincias biogeográficas, representando el área de distribución de la especie en México, y localizadas en hábitats con diferente grado de intervención humana: poblaciones sin intervención humana (silvestres); poblaciones toleradas (lindes y pastizales), y poblaciones manejadas por el hombre (monocultivos y huertos familiares). Entre los virus analizados, los begomovirus mostraron la mayor incidencia, detectándose en todas las poblaciones y años de muestreo. Las únicas dos especies de begomovirus que se encontraron infectando al chiltepín fueron: el virus del mosaico dorado del chile (Pepper golden mosaic virus, PepGMV) y el virus huasteco del amarilleo de venas del chile (Pepper huasteco yellow vein virus, PHYVV). Por ello, todos los análisis realizados en esta tesis se centran en estas dos especies de virus. La incidencia de PepGMV y PHYVV, tanto en infecciones simples como mixtas, aumento cuanto mayor fue el nivel de intervención humana en las poblaciones de chiltepín, lo que a su vez se asoció con una menor biodiversidad y una mayor densidad de plantas. Además, la incidencia de infecciones mixtas, altamente relacionada con la presencia de síntomas, fue también mayor en las poblaciones cultivadas. La incidencia de estos dos virus también varió en función de la población de chiltepín y de la provincia biogeográfica. Por tanto, estos resultados apoyan una de las hipótesis XVI clásicas de la Patología Vegetal según la cual la simplificación de los ecosistemas naturales debida a la intervención humana conduce a un mayor riesgo de enfermedad de las plantas, e ilustran sobre la importancia de la heterogeneidad del paisaje a diferentes escalas en la determinación de patrones epidemiológicos. La heterogeneidad del paisaje no solo afectó a la epidemiología de PepGMV y PHYVV, sino también a la estructura genética de sus poblaciones. En ambos virus, el nivel de diferenciación genética mayor fue la población, probablemente asociado a la capacidad de migración de su vector Bemisia tabaci; y en segundo lugar la provincia biogeográfica, lo que podría estar relacionado con el papel del ser humano como agente dispersor de PepGMV y PHYVV. La estima de las tasas de sustitución nucleotídica de las poblaciones de PepGMV y PHYVV mostró una rápida dinámica evolutiva. Los árboles filogenéticos de ambos virus presentaron una topología en estrella, lo que sugiere una expansión reciente en las poblaciones de chiltepín. La reconstrucción de los patrones de migración de ambos virus indicó que ésta expansión parece haberse producido desde la zona central de México siguiendo un patrón radial, y en los últimos 30 años. Es importante tener en cuenta que el patrón espacial de la diversidad genética de las poblaciones de PepGMV y PHYVV es similar al descrito previamente para el chiltepín lo que podría dar lugar a la congruencia de las genealogías del huésped y la de los virus. Dicha congruencia se encontró cuando se tuvieron en cuenta únicamente las poblaciones de hábitats silvestres y tolerados, lo que probablemente se debe a una codivergencia en el espacio pero no en el tiempo, dado que la evolución de virus y huésped han ocurrido a escalas temporales muy diferentes. Finalmente, el análisis de la frecuencia de recombinación en PepGMV y PHYVV indicó que esta juega un papel importante en la evolución de ambos virus, dependiendo su importancia del nivel de intervención humana de la población de chiltepín. Este factor afectó también a la intensidad de la selección a la que se ven sometidos los genomas de PepGMV y PHYVV. Los resultados de esta tesis ponen de manifiesto la importancia que la reducción de la biodiversidad asociada al nivel de intervención humana de las poblaciones de plantas y la heterogeneidad del paisaje tiene en la emergencia de nuevas enfermedades virales. Por tanto, es necesario considerar estos factores ambientales a la hora de comprender la epidemiologia y la evolución de los virus de plantas.XVII SUMMARY Plant viruses play a key role as modulators of the spatio-temporal dynamics of their host populations, due to their negative impact in plant fitness. Knowledge on the genetic and environmental factors that determine the epidemiology and the genetic structure of virus populations may help to understand the ecological role of viral infections. However, few experimental works have addressed this issue. This thesis analyses the effect of landscape heterogeneity in the prevalence of viruses and the genetic structure of their populations. Also, how these environmental factors influence the relative importance of the main mechanisms for generating genetic variability (mutation, recombination and migration) during virus evolution is explored. To do so, the begomoviruses infecting chiltepin (Capsicum annuum var. aviculare (Dierbach) D'Arcy & Eshbaugh) populations in Mexico were used. Incidence of different viruses in chiltepin populations of six biogeographical provinces representing the species distribution in Mexico was determined. Populations belonged to different habitats according to the level of human management: populations with no human intervention (Wild); populations naturally dispersed and tolerated in managed habitats (let-standing), and human managed populations (cultivated). Among the analyzed viruses, the begomoviruses showed the highest prevalence, being detected in all populations and sampling years. Only two begomovirus species infected chiltepin: Pepper golden mosaic virus, PepGMV and Pepper huasteco yellow vein virus, PHYVV. Therefore, all the analyses presented in this thesis are focused in these two viruses. The prevalence of PepGMV and PHYVV, in single and mixed infections, increased with higher levels of human management of the host population, which was associated with decreased biodiversity and increased plant density. Furthermore, cultivated populations showed higher prevalence of mixed infections and symptomatic plants. The prevalence of the two viruses also varied depending on the chiltepin population and on the biogeographical province. Therefore, these results support a classical hypothesis of Plant Pathology stating that simplification of natural ecosystems due to human management leads to an increased disease risk, and illustrate on the importance of landscape heterogeneity in determining epidemiological patterns. Landscape heterogeneity not only affected the epidemiology of PepGMV and PHYVV, but also the genetic structure of their populations. Both viruses had the highest level of genetic differentiation at the population scale, probably associated with the XVIII migration patterns of its vector Bemisia tabaci, and a second level at the biogeographical province scale, which could be related to the role of humans as dispersal agents of PepGMV and PHYVV. The estimates of nucleotide substitution rates of the virus populations indicated rapid evolutionary dynamics. Accordingly, phylogenetic trees of both viruses showed a star topology, suggesting a recent diversification in the chiltepin populations. Reconstruction of PepGMV and PHYVV migration patterns indicated that they expanded from central Mexico following a radial pattern during the last 30 years. Importantly, the spatial genetic structures of the virus populations were similar to that described previously for the chiltepin, which may result in the congruence of the host and virus genealogies. Such congruence was found only in wild and let-standing populations. This is probably due to a co-divergence in space but not in time, given the different evolutionary time scales of the host and virus populations. Finally, the frequency of recombination detected in the PepGMV and PHYVV populations indicated that this mechanism plays an important role in the evolution of both viruses at the intra-specific scale. The level of human management had a minor effect on the frequency of recombination, but influenced the strength of negative selective pressures in the viral genomes. The results of this thesis highlight the importance of decreased biodiversity in plant populations associated with the level of human management and of landscape heterogeneity on the emergence of new viral diseases. Therefore it is necessary to consider these environmental factors in order to fully understand the epidemiology and evolution of plant viruses.
Resumo:
Se han desarrollado una serie de técnicas colorimétricas sencillas, rápidas y eficaces para la detección de magulladuras en frutos de manzana cvs. «Golden Delicious» y «Starking» y de pera cv. «Blanquilla » y «Decana de Comice». Dichas técnicas están basadas, por una parte, en la reacción coloreada que se produce entre el grupo de enzimas polifenoloxidasas con soluciones que contienen como sustratos característicos catequina y epinefrina y, por otra, en el empleo del reactivo safranina. Los resultados obtenidos demuestran que el tipo de técnicas descrito podría resultar de gran utilidad en la detección no sólo de las magulladuras producidas por diversas cargas mecánicas durante el proceso de recolección y envasado en frutos de pepita como los aquí ensayados, sino también en el estudio específico del tipo de magulladura producido. Se sugiere, que las técnicas podrían hacerse extensivas a otros tipos de frutos.
Resumo:
Mealiness is a textural attribute related to an internal fruit disorder that involves quality loss. It is characterised by the combination of abnormal softness of the fruit and absence of free juiciness in the mouth when eaten by the consumer. Recent research concluded with the development of precise instrumental procedure to measure a scale of mealiness based on the combination of several rheological properties and empirical magnitudes. In this line, time-domain laser reflectance spectroscopy (TDRS) is a medical technology, new in agrofood research, which is capable of obtaining physical and chemical information independently and simultaneously, and this can be of interest to characterise mealiness. Using VIS & NIR lasers as light sources, TDRS was applied in this work to Golden Delicious and Cox apples (n=90), conforming several batches of untreated samples and storage-treated (20°C & 95%RH) to promote the development of mealiness. The collected database was clustered into different groups according to their instrumental test values (Barreiro et al, 1998). The optical coefficients were used as explanatory variables when building discriminant analysis functions for mealiness, achieving a classification score above 80% of correctly identified mealy versus fresh apples.
Resumo:
Skin properties have an important influence on impact parameters and bruising. Skin deformation at puncture (a measure of the turgidity of the fruit skin) is negatively correlated with bruise volume in Golden apples after cold storage.
Resumo:
Samples of "Golden" and "Granny Smith" apples and "Conference" and "Doyenne of Cornice" pears have been tested. A great effect of storage conditions has been detected for pear but not for apple varieties. Both apple cultivars show to be equally resistant to quasi-static and to dinamic loading while pear varieties show great differences. All these effects can be quantified in order to describe mathematically species and varieties behavior.
Resumo:
The Photovoltaic (PV) Module Reliability Workshop was held in Golden, Colorado, on Feb. 28?March 1, 2012. The objective was to share information to improve PV module reliability because such improvements reduce the cost of solar electricity and give investors confidence in the technology. NREL led the workshop, which was sponsored by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (Solar Program).
Resumo:
El objetivo de la tesis es investigar los beneficios que el atrapamiento de la luz mediante fenómenos difractivos puede suponer para las células solares de silicio cristalino y las de banda intermedia. Ambos tipos de células adolecen de una insuficiente absorción de fotones en alguna región del espectro solar. Las células solares de banda intermedia son teóricamente capaces de alcanzar eficiencias mucho mayores que los dispositivos convencionales (con una sola banda energética prohibida), pero los prototipos actuales se resienten de una absorción muy débil de los fotones con energías menores que la banda prohibida. Del mismo modo, las células solares de silicio cristalino absorben débilmente en el infrarrojo cercano debido al carácter indirecto de su banda prohibida. Se ha prestado mucha atención a este problema durante las últimas décadas, de modo que todas las células solares de silicio cristalino comerciales incorporan alguna forma de atrapamiento de luz. Por razones de economía, en la industria se persigue el uso de obleas cada vez más delgadas, con lo que el atrapamiento de la luz adquiere más importancia. Por tanto aumenta el interés en las estructuras difractivas, ya que podrían suponer una mejora sobre el estado del arte. Se comienza desarrollando un método de cálculo con el que simular células solares equipadas con redes de difracción. En este método, la red de difracción se analiza en el ámbito de la óptica física, mediante análisis riguroso con ondas acopladas (rigorous coupled wave analysis), y el sustrato de la célula solar, ópticamente grueso, se analiza en los términos de la óptica geométrica. El método se ha implementado en ordenador y se ha visto que es eficiente y da resultados en buen acuerdo con métodos diferentes descritos por otros autores. Utilizando el formalismo matricial así derivado, se calcula el límite teórico superior para el aumento de la absorción en células solares mediante el uso de redes de difracción. Este límite se compara con el llamado límite lambertiano del atrapamiento de la luz y con el límite absoluto en sustratos gruesos. Se encuentra que las redes biperiódicas (con geometría hexagonal o rectangular) pueden producir un atrapamiento mucho mejor que las redes uniperiódicas. El límite superior depende mucho del periodo de la red. Para periodos grandes, las redes son en teoría capaces de alcanzar el máximo atrapamiento, pero sólo si las eficiencias de difracción tienen una forma peculiar que parece inalcanzable con las herramientas actuales de diseño. Para periodos similares a la longitud de onda de la luz incidente, las redes de difracción pueden proporcionar atrapamiento por debajo del máximo teórico pero por encima del límite Lambertiano, sin imponer requisitos irrealizables a la forma de las eficiencias de difracción y en un margen de longitudes de onda razonablemente amplio. El método de cálculo desarrollado se usa también para diseñar y optimizar redes de difracción para el atrapamiento de la luz en células solares. La red propuesta consiste en un red hexagonal de pozos cilíndricos excavados en la cara posterior del sustrato absorbente de la célula solar. La red se encapsula en una capa dieléctrica y se cubre con un espejo posterior. Se simula esta estructura para una célula solar de silicio y para una de banda intermedia y puntos cuánticos. Numéricamente, se determinan los valores óptimos del periodo de la red y de la profundidad y las dimensiones laterales de los pozos para ambos tipos de células. Los valores se explican utilizando conceptos físicos sencillos, lo que nos permite extraer conclusiones generales que se pueden aplicar a células de otras tecnologías. Las texturas con redes de difracción se fabrican en sustratos de silicio cristalino mediante litografía por nanoimpresión y ataque con iones reactivos. De los cálculos precedentes, se conoce el periodo óptimo de la red que se toma como una constante de diseño. Los sustratos se procesan para obtener estructuras precursoras de células solares sobre las que se realizan medidas ópticas. Las medidas de reflexión en función de la longitud de onda confirman que las redes cuadradas biperiódicas consiguen mejor atrapamiento que las uniperiódicas. Las estructuras fabricadas se simulan con la herramienta de cálculo descrita en los párrafos precedentes y se obtiene un buen acuerdo entre la medida y los resultados de la simulación. Ésta revela que una fracción significativa de los fotones incidentes son absorbidos en el reflector posterior de aluminio, y por tanto desaprovechados, y que este efecto empeora por la rugosidad del espejo. Se desarrolla un método alternativo para crear la capa dieléctrica que consigue que el reflector se deposite sobre una superficie plana, encontrándose que en las muestras preparadas de esta manera la absorción parásita en el espejo es menor. La siguiente tarea descrita en la tesis es el estudio de la absorción de fotones en puntos cuánticos semiconductores. Con la aproximación de masa efectiva, se calculan los niveles de energía de los estados confinados en puntos cuánticos de InAs/GaAs. Se emplea un método de una y de cuatro bandas para el cálculo de la función de onda de electrones y huecos, respectivamente; en el último caso se utiliza un hamiltoniano empírico. La regla de oro de Fermi permite obtener la intensidad de las transiciones ópticas entre los estados confinados. Se investiga el efecto de las dimensiones del punto cuántico en los niveles de energía y la intensidad de las transiciones y se obtiene que, al disminuir la anchura del punto cuántico respecto a su valor en los prototipos actuales, se puede conseguir una transición más intensa entre el nivel intermedio fundamental y la banda de conducción. Tomando como datos de partida los niveles de energía y las intensidades de las transiciones calculados como se ha explicado, se desarrolla un modelo de equilibrio o balance detallado realista para células solares de puntos cuánticos. Con el modelo se calculan las diferentes corrientes debidas a transiciones ópticas entre los numerosos niveles intermedios y las bandas de conducción y de valencia bajo ciertas condiciones. Se distingue de modelos de equilibrio detallado previos, usados para calcular límites de eficiencia, en que se adoptan suposiciones realistas sobre la absorción de fotones para cada transición. Con este modelo se reproducen datos publicados de eficiencias cuánticas experimentales a diferentes temperaturas con un acuerdo muy bueno. Se muestra que el conocido fenómeno del escape térmico de los puntos cuánticos es de naturaleza fotónica; se debe a los fotones térmicos, que inducen transiciones entre los estados excitados que se encuentran escalonados en energía entre el estado intermedio fundamental y la banda de conducción. En el capítulo final, este modelo realista de equilibrio detallado se combina con el método de simulación de redes de difracción para predecir el efecto que tendría incorporar una red de difracción en una célula solar de banda intermedia y puntos cuánticos. Se ha de optimizar cuidadosamente el periodo de la red para equilibrar el aumento de las diferentes transiciones intermedias, que tienen lugar en serie. Debido a que la absorción en los puntos cuánticos es extremadamente débil, se deduce que el atrapamiento de la luz, por sí solo, no es suficiente para conseguir corrientes apreciables a partir de fotones con energía menor que la banda prohibida en las células con puntos cuánticos. Se requiere una combinación del atrapamiento de la luz con un incremento de la densidad de puntos cuánticos. En el límite radiativo y sin atrapamiento de la luz, se necesitaría que el número de puntos cuánticos de una célula solar se multiplicara por 1000 para superar la eficiencia de una célula de referencia con una sola banda prohibida. En cambio, una célula con red de difracción precisaría un incremento del número de puntos en un factor 10 a 100, dependiendo del nivel de la absorción parásita en el reflector posterior. Abstract The purpose of this thesis is to investigate the benefits that diffractive light trapping can offer to quantum dot intermediate band solar cells and crystalline silicon solar cells. Both solar cell technologies suffer from incomplete photon absorption in some part of the solar spectrum. Quantum dot intermediate band solar cells are theoretically capable of achieving much higher efficiencies than conventional single-gap devices. Present prototypes suffer from extremely weak absorption of subbandgap photons in the quantum dots. This problem has received little attention so far, yet it is a serious barrier to the technology approaching its theoretical efficiency limit. Crystalline silicon solar cells absorb weakly in the near infrared due to their indirect bandgap. This problem has received much attention over recent decades, and all commercial crystalline silicon solar cells employ some form of light trapping. With the industry moving toward thinner and thinner wafers, light trapping is becoming of greater importance and diffractive structures may offer an improvement over the state-of-the-art. We begin by constructing a computational method with which to simulate solar cells equipped with diffraction grating textures. The method employs a wave-optical treatment of the diffraction grating, via rigorous coupled wave analysis, with a geometric-optical treatment of the thick solar cell bulk. These are combined using a steady-state matrix formalism. The method has been implemented computationally, and is found to be efficient and to give results in good agreement with alternative methods from other authors. The theoretical upper limit to absorption enhancement in solar cells using diffractions gratings is calculated using the matrix formalism derived in the previous task. This limit is compared to the so-called Lambertian limit for light trapping with isotropic scatterers, and to the absolute upper limit to light trapping in bulk absorbers. It is found that bi-periodic gratings (square or hexagonal geometry) are capable of offering much better light trapping than uni-periodic line gratings. The upper limit depends strongly on the grating period. For large periods, diffraction gratings are theoretically able to offer light trapping at the absolute upper limit, but only if the scattering efficiencies have a particular form, which is deemed to be beyond present design capabilities. For periods similar to the incident wavelength, diffraction gratings can offer light trapping below the absolute limit but above the Lambertian limit without placing unrealistic demands on the exact form of the scattering efficiencies. This is possible for a reasonably broad wavelength range. The computational method is used to design and optimise diffraction gratings for light trapping in solar cells. The proposed diffraction grating consists of a hexagonal lattice of cylindrical wells etched into the rear of the bulk solar cell absorber. This is encapsulated in a dielectric buffer layer, and capped with a rear reflector. Simulations are made of this grating profile applied to a crystalline silicon solar cell and to a quantum dot intermediate band solar cell. The grating period, well depth, and lateral well dimensions are optimised numerically for both solar cell types. This yields the optimum parameters to be used in fabrication of grating equipped solar cells. The optimum parameters are explained using simple physical concepts, allowing us to make more general statements that can be applied to other solar cell technologies. Diffraction grating textures are fabricated on crystalline silicon substrates using nano-imprint lithography and reactive ion etching. The optimum grating period from the previous task has been used as a design parameter. The substrates have been processed into solar cell precursors for optical measurements. Reflection spectroscopy measurements confirm that bi-periodic square gratings offer better absorption enhancement than uni-periodic line gratings. The fabricated structures have been simulated with the previously developed computation tool, with good agreement between measurement and simulation results. The simulations reveal that a significant amount of the incident photons are absorbed parasitically in the rear reflector, and that this is exacerbated by the non-planarity of the rear reflector. An alternative method of depositing the dielectric buffer layer was developed, which leaves a planar surface onto which the reflector is deposited. It was found that samples prepared in this way suffered less from parasitic reflector absorption. The next task described in the thesis is the study of photon absorption in semiconductor quantum dots. The bound-state energy levels of in InAs/GaAs quantum dots is calculated using the effective mass approximation. A one- and four- band method is applied to the calculation of electron and hole wavefunctions respectively, with an empirical Hamiltonian being employed in the latter case. The strength of optical transitions between the bound states is calculated using the Fermi golden rule. The effect of the quantum dot dimensions on the energy levels and transition strengths is investigated. It is found that a strong direct transition between the ground intermediate state and the conduction band can be promoted by decreasing the quantum dot width from its value in present prototypes. This has the added benefit of reducing the ladder of excited states between the ground state and the conduction band, which may help to reduce thermal escape of electrons from quantum dots: an undesirable phenomenon from the point of view of the open circuit voltage of an intermediate band solar cell. A realistic detailed balance model is developed for quantum dot solar cells, which uses as input the energy levels and transition strengths calculated in the previous task. The model calculates the transition currents between the many intermediate levels and the valence and conduction bands under a given set of conditions. It is distinct from previous idealised detailed balance models, which are used to calculate limiting efficiencies, since it makes realistic assumptions about photon absorption by each transition. The model is used to reproduce published experimental quantum efficiency results at different temperatures, with quite good agreement. The much-studied phenomenon of thermal escape from quantum dots is found to be photonic; it is due to thermal photons, which induce transitions between the ladder of excited states between the ground intermediate state and the conduction band. In the final chapter, the realistic detailed balance model is combined with the diffraction grating simulation method to predict the effect of incorporating a diffraction grating into a quantum dot intermediate band solar cell. Careful optimisation of the grating period is made to balance the enhancement given to the different intermediate transitions, which occur in series. Due to the extremely weak absorption in the quantum dots, it is found that light trapping alone is not sufficient to achieve high subbandgap currents in quantum dot solar cells. Instead, a combination of light trapping and increased quantum dot density is required. Within the radiative limit, a quantum dot solar cell with no light trapping requires a 1000 fold increase in the number of quantum dots to supersede the efficiency of a single-gap reference cell. A quantum dot solar cell equipped with a diffraction grating requires between a 10 and 100 fold increase in the number of quantum dots, depending on the level of parasitic absorption in the rear reflector.
Resumo:
Se presenta un completo sistema de detecci6n para el estudio de IDS impactos sobre frutas y hortalizas. Se han ensayado» durante un periodo de 10 a 12 semanas de almacenamiento en cámara frigorífica y de maduraci6n, tres variedades de peras: Blanquilla, Limonera y Decana de Comice y dos de manzanas: Golden Delicious y Starking. Los impactos se realizaron con un indentador de 50.6 g con cabeza de acero esférica de 19 mm de diámetro. Las alturas ensayadas fueron de 2 a 12 cm de dos en dos y uno complementario a 20 cm sobre cada fruto. La magulladura resultante se midió. y se observó cuidadosamente su estructura. Como método de análisis estadístico se utilizó el factorial de correspondencias-Los parámetros mecánicos y la magulladura resultado de un impacto se pueden clasificar en tres categorías, en función de su correlación con la energía (altura) del impacto o con la textura de los frutos. Se han establecido los principios técnicos para el diseño de un mecanismo no destructivo de detección de la madurez de estos frutos.
Resumo:
Algunos factores de calidad, tales como el tamaño, la forma, el color, el sabor la firmeza y el aroma están muy relacionados con el estado de madurez de los frutos. Se han estudiado diversos parámetros físicos para determinar su relación con la madurez de los frutos por ensayos no-destructivos. Estudio anteriores indican que un grupo de parámetros de impacto pueden ser utilizados para predecirla. Este trabajo se ha llevado a cabo con dos variedades de pera ("Blanquilla" y "Decana de Cornice") y con dos de manzana ("Golden Delicious" y "Starking"). Durante varias semanas (campaña 1990, 1991) se ensayaron muestras de frutos de distinta madurez. Los ensayos de impacto se han completado con una serie de ensayos paralelos destructivos para realizar un seguimiento de la madurez hasta senescencia. Con los datos de 11 parámetros de impacto relacionados con la madurez, se ha realizado un análisis discriminante paso a paso. Así, hemos podido conocer las variables que más discriminan, en cuanto a madurez, a lo largo del tiempo. Con estas variables y los datos obtenidos en los ensayos, se ha creado un procedimiento informatizado y una base de datos, los cuales permiten la clasificación automática de frutos por medio de impactos mecánicos no destructivos. El correspondiente dispositivo se encuentra en fase avanzada de diseño y pendiente de patente.
Resumo:
Se busca con este objetivos basados en variación presentan a lo de frutos. trabajo la obtención de criterios acuellas longitudes de onda que más largo de la maduración post-recolección Se ha seguido la ¡evolución de dos variedades de pera ("Blanquilla" y "Decana de Comice") y dos de manzana ("Golden Delicious" y "Starking") durante el periodo de maduración post recolección. Se han tomado muestras periódicas de cinco frutos de cada variedad y de cada uno de ellos, sobre la piel, se ha obtenido una curva espectrofotométrica y otra de su primera derivada mediante un espectrofotómetro Perkin-Elmer 555 dotado de una esfera integradora. El espectro estudiado abarca desde 340 hasta 800 nanómetros, es decir, el visible. Las curvas obtenidas han sido sometidas a tratamiento estadístico y a partir de los resultados derivados del mismo se han elegido un grupo de longitudes de onda para someterlas a análisis discriminante. A partir del mismo se establecen los criterios que mejor discriminan la variación de los frutos a lo largo de la maduración, toara cada variedad ensayada.
Resumo:
Se han analizado muestras de manzanas Golden y Granny Smith y de peras Conferencia y Decana del Comicio. Se ha apreciado una considerable influencia de las condiciones de almacenamiento sobre las peras pero no en las variedades de manzana. Todos estos efectos pueden ser cuantificados a fin de describir, matemáticamente, el comportamiento de especies y variedades.