17 resultados para Glaciers

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use an automatic weather station and surface mass balance dataset spanning four melt seasons collected on Hurd Peninsula Glaciers, South Shetland Islands, to investigate the point surface energy balance, to determine the absolute and relative contribution of the various energy fluxes acting on the glacier surface and to estimate the sensitivity of melt to ambient temperature changes. Long-wave incoming radiation is the main energy source for melt, while short-wave radiation is the most important flux controlling the variation of both seasonal and daily mean surface energy balance. Short-wave and long-wave radiation fluxes do, in general, balance each other, resulting in a high correspondence between daily mean net radiation flux and available melt energy flux. We calibrate a distributed melt model driven by air temperature and an expression for the incoming short-wave radiation. The model is calibrated with the data from one of the melt seasons and validated with the data of the three remaining seasons. The model results deviate at most 140 mm w.e. from the corresponding observations using the glaciological method. The model is very sensitive to changes in ambient temperature: a 0.5 ◦ C increase results in 56 % higher melt rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new 10 year surface mass balance (SMB) record of Hurd and Johnsons Glaciers, Livingston Island, Antarctica, is presented and compared with earlier estimates on the basis of local and regional meteorological conditions and trends.Since Johnsons is a tidewater glacier, we also include a calving flux calculation to estimate its total mass balance. The average annual SMB over the 10 year observation period 2002–11 is –0.15�0.10 m w.e. for Hurd Glacier and 0.05�0.10 m w.e. for Johnsons Glacier. Adding the calving losses to the latter results in a total mass balance of –0.09�0.10 m w.e. There has been a deceleration of the mass losses of these glaciers from 1957–2000 to 2002–11, which have nearly halved for both glaciers. We attribute this decrease in the mass losses to a combination of increased accumulation in the region and decreased melt. The increased accumulation is attributed to larger precipitation associated with the recent deepening of the circumpolar pressure trough, while the melt decrease is associated with lower summer surface temperatures during the past decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of ongoing work to obtain a reliable estimate of the total ice volume of Svalbard glaciers and their potential contribution to sea-level rise, we present here volume calculations, with detailed error estimates, for ten glaciers on western Nordenskiöld Land, central Spitsbergen, Svalbard. The volume estimates are based upon a dense net of GPR-retrieved ice thickness data collected over several field campaigns spanning the period 1999-2012. On the basis of the pattern of scattering in theradargrams, we also analyse the hydrothermal structure of these glaciers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo final de las investigaciones recogidas en esta tesis doctoral es la estimación del volumen de hielo total de los ms de 1600 glaciares de Svalbard, en el Ártico, y, con ello, su contribución potencial a la subida del nivel medio del mar en un escenario de calentamiento global. Los cálculos más exactos del volumen de un glaciar se efectúan a partir de medidas del espesor de hielo obtenidas con georradar. Sin embargo, estas medidas no son viables para conjuntos grandes de glaciares, debido al coste, dificultades logísticas y tiempo requerido por ellas, especialmente en las regiones polares o de montaña. Frente a ello, la determinación de áreas de glaciares a partir de imágenes de satélite sí es viable a escalas global y regional, por lo que las relaciones de escala volumen-área constituyen el mecanismo más adecuado para las estimaciones de volúmenes globales y regionales, como las realizadas para Svalbard en esta tesis. Como parte del trabajo de tesis, hemos elaborado un inventario de los glaciares de Svalbard en los que se han efectuado radioecosondeos, y hemos realizado los cálculos del volumen de hielo de más de 80 cuencas glaciares de Svalbard a partir de datos de georradar. Estos volúmenes han sido utilizados para calibrar las relaciones volumen-área desarrolladas en la tesis. Los datos de georradar han sido obtenidos en diversas campañas llevadas a cabo por grupos de investigación internacionales, gran parte de ellas lideradas por el Grupo de Simulación Numérica en Ciencias e Ingeniería de la Universidad Politécnica de Madrid, del que forman parte la doctoranda y los directores de tesis. Además, se ha desarrollado una metodología para la estimación del error en el cálculo de volumen, que aporta una novedosa técnica de cálculo del error de interpolación para conjuntos de datos del tipo de los obtenidos con perfiles de georradar, que presentan distribuciones espaciales con unos patrones muy característicos pero con una densidad de datos muy irregular. Hemos obtenido en este trabajo de tesis relaciones de escala específicas para los glaciares de Svalbard, explorando la sensibilidad de los parámetros a diferentes morfologías glaciares, e incorporando nuevas variables. En particular, hemos efectuado experimentos orientados a verificar si las relaciones de escala obtenidas caracterizando los glaciares individuales por su tamaño, pendiente o forma implican diferencias significativas en el volumen total estimado para los glaciares de Svalbard, y si esta partición implica algún patrón significativo en los parámetros de las relaciones de escala. Nuestros resultados indican que, para un valor constante del factor multiplicativo de la relacin de escala, el exponente que afecta al área en la relación volumen-área decrece según aumentan la pendiente y el factor de forma, mientras que las clasificaciones basadas en tamaño no muestran un patrón significativo. Esto significa que los glaciares con mayores pendientes y de tipo circo son menos sensibles a los cambios de área. Además, los volúmenes de la población total de los glaciares de Svalbard calculados con fraccionamiento en grupos por tamaño y pendiente son un 1-4% menores que los obtenidas usando la totalidad de glaciares sin fraccionamiento en grupos, mientras que los volúmenes calculados fraccionando por forma son un 3-5% mayores. También realizamos experimentos multivariable para obtener estimaciones óptimas del volumen total mediante una combinación de distintos predictores. Nuestros resultados muestran que un modelo potencial simple volumen-área explica el 98.6% de la varianza. Sólo el predictor longitud del glaciar proporciona significación estadística cuando se usa además del área del glaciar, aunque el coeficiente de determinación disminuye en comparación con el modelo más simple V-A. El predictor intervalo de altitud no proporciona información adicional cuando se usa además del área del glaciar. Nuestras estimaciones del volumen de la totalidad de glaciares de Svalbard usando las diferentes relaciones de escala obtenidas en esta tesis oscilan entre 6890 y 8106 km3, con errores relativos del orden de 6.6-8.1%. El valor medio de nuestras estimaciones, que puede ser considerado como nuestra mejor estimación del volumen, es de 7.504 km3. En términos de equivalente en nivel del mar (SLE), nuestras estimaciones corresponden a una subida potencial del nivel del mar de 17-20 mm SLE, promediando 19_2 mm SLE, donde el error corresponde al error en volumen antes indicado. En comparación, las estimaciones usando las relaciones V-A de otros autores son de 13-26 mm SLE, promediando 20 _ 2 mm SLE, donde el error representa la desviación estándar de las distintas estimaciones. ABSTRACT The final aim of the research involved in this doctoral thesis is the estimation of the total ice volume of the more than 1600 glaciers of Svalbard, in the Arctic region, and thus their potential contribution to sea-level rise under a global warming scenario. The most accurate calculations of glacier volumes are those based on ice-thicknesses measured by groundpenetrating radar (GPR). However, such measurements are not viable for very large sets of glaciers, due to their cost, logistic difficulties and time requirements, especially in polar or mountain regions. On the contrary, the calculation of glacier areas from satellite images is perfectly viable at global and regional scales, so the volume-area scaling relationships are the most useful tool to determine glacier volumes at global and regional scales, as done for Svalbard in this PhD thesis. As part of the PhD work, we have compiled an inventory of the radio-echo sounded glaciers in Svalbard, and we have performed the volume calculations for more than 80 glacier basins in Svalbard from GPR data. These volumes have been used to calibrate the volume-area relationships derived in this dissertation. Such GPR data have been obtained during fieldwork campaigns carried out by international teams, often lead by the Group of Numerical Simulation in Science and Engineering of the Technical University of Madrid, to which the PhD candidate and her supervisors belong. Furthermore, we have developed a methodology to estimate the error in the volume calculation, which includes a novel technique to calculate the interpolation error for data sets of the type produced by GPR profiling, which show very characteristic data distribution patterns but with very irregular data density. We have derived in this dissertation scaling relationships specific for Svalbard glaciers, exploring the sensitivity of the scaling parameters to different glacier morphologies and adding new variables. In particular, we did experiments aimed to verify whether scaling relationships obtained through characterization of individual glacier shape, slope and size imply significant differences in the estimated volume of the total population of Svalbard glaciers, and whether this partitioning implies any noticeable pattern in the scaling relationship parameters. Our results indicate that, for a fixed value of the factor in the scaling relationship, the exponent of the area in the volume-area relationship decreases as slope and shape increase, whereas size-based classifications do not reveal any clear trend. This means that steep slopes and cirque-type glaciers are less sensitive to changes in glacier area. Moreover, the volumes of the total population of Svalbard glaciers calculated according to partitioning in subgroups by size and slope are smaller (by 1-4%) than that obtained considering all glaciers without partitioning into subgroups, whereas the volumes calculated according to partitioning in subgroups by shape are 3-5% larger. We also did multivariate experiments attempting to optimally predict the volume of Svalbard glaciers from a combination of different predictors. Our results show that a simple power-type V-A model explains 98.6% of the variance. Only the predictor glacier length provides statistical significance when used in addition to the predictor glacier area, though the coefficient of determination decreases as compared with the simpler V-A model. The predictor elevation range did not provide any additional information when used in addition to glacier area. Our estimates of the volume of the entire population of Svalbard glaciers using the different scaling relationships that we have derived along this thesis range within 6890-8106 km3, with estimated relative errors in total volume of the order of 6.6-8.1% The average value of all of our estimates, which could be used as a best estimate for the volume, is 7,504 km3. In terms of sea-level equivalent (SLE), our volume estimates correspond to a potential contribution to sea-level rise within 17-20 mm SLE, averaging 19 _ 2 mm SLE, where the quoted error corresponds to our estimated relative error in volume. For comparison, the estimates using the V-A scaling relations found in the literature range within 13-26 mm SLE, averaging 20 _ 2 mm SLE, where the quoted error represents the standard deviation of the different estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of ongoing work within the SvalGlac project aimed to obtain a reliable estimate of the total ice volume of Svalbard glaciers and their potential contribution to sea level rise, in this contribution we present volume calculations, with detailed error estimates, for ten glaciers on western Nordenskiöld Land, central Spitsbergen, Svalbard. The volume estimates are based upon a dense net of GPR-retrieved ice thickness data collected over several field campaigns spanning the period 1999-2012, all of them except one within 2010-2012. The total area and volume of the ensemble are 113.38±0.09 km2 and 10.439±0.185 km3, respectively, while the individual areas, volumes and average ice thickness lie within 2.5-49.1 km2, 0.08-5.48 km3 and 29-108 m, respectively. The maximum recorded ice thickness, 265±15 m, corresponds to Fridtjovbreen, which has also the largest average thickness (108±1m). Available empirical formulae for Svalbard glaciers overestimate the total volume of these glaciers by 24% with respect to our calculation. On the basis of the pattern of scattering in the radargrams, we also analyse the hydrothermal structure of these glaciers. Nine out of ten are polythermal, while only one is entirely cold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the aims of the SvalGlac project is to obtain an improved estimate, with reliable error estimates, of the volume of Svalbard glaciers and their potential contribution to sea level rise. As part of this work, we present volume calculations, with detailed error estimates, for eight glaciers on Wedel Jarlsberg Land, southern Spitsbergen, Svalbard. The volume estimates are based upon a dense net of GPR-retrieved ice thickness data collected over several field campaigns spanning the period 2004-2011. The total area and volume of the ensemble are 502.9±18.6 km2 and 80.72±2.85 km3, respectively. Excluding Ariebreen (a tiny glacier, menor que 0.4 km2 in area), the individual areas, volumes and average ice thickness lie within 4.7-141.0 km2, 0.30-25.85 km3 and 64-183 m, respectively. The maximum recorded ice thickness, ca. 619±13 m, is found in Austre Torellbreen. To estimate the ice volume of small non-echo-sounded tributary glaciers, we used a function providing the best fit to the ice thickness along the centre line of a collection of such tributaries where echo-soundings were available, and assuming parabolic cross-sections. We did some tests on the effect on the measured ice volumes of the distinct radio-wave velocity (RWV) of firn as compared to ice, and cold versus temperate ice, concluding that the changes in volume implied by such corrections were within the error bounds of our volume estimate using a constant RWV for the entire glacier inferred from common mid-point measurements on the upper ablation area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present volume calculations, with detailed error estimates, for eight glaciers on Wedel Jarlsberg Land, southern Spitsbergen, Svalbard, and compare them to those obtained from area-volume scaling relationships. The volume estimates are based upon a dense net of GPR-retrieved ice thickness data collected over several field campaigns spanning the period 2004-2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present ground-penetrating radar (GPR)—based volume calculations, with associated error estimates, for eight glaciers on Wedel Jarlsberg Land, southwestern Spitsbergen, Svalbard, and compare them with those obtained from volume-area scaling relationships. The volume estimates are based upon GPR ice-thickness data collected during the period 2004–2013. The total area and volume of the ensemble are 502.91 ± 18.60 km2 and 91.91 ± 3.12 km3, respectively. The individual areas, volumes, and average ice thickness lie within 0.37–140.99 km2, 0.01–31.98 km3, and 28–227 m, respectively, with a maximum recorded ice thickness of 619 ± 13 m on Austre Torellbreen. To estimate the ice volume of unsurveyed tributary glaciers, we combine polynomial cross-sections with a function providing the best fit to the measured ice thickness along the center line of a collection of 22 surveyed tributaries. For the time-to-depth conversion of GPR data, we test the use of a glacierwide constant radio-wave velocity chosen on the basis of local or regional common midpoint measurements, versus the use of distinct velocities for the firn, cold ice, and temperate ice layers, concluding that the corresponding volume calculations agree with each other within their error bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a set of new volume scaling relationships specific to Svalbard glaciers, derived from a sample of 60 volume–area pairs. Glacier volumes are computed from ground-penetrating radar (GPR)-retrieved ice thickness measurements, which have been compiled from different sources for this study. The most precise scaling models, in terms of lowest cross-validation errors, are obtained using a multivariate approach where, in addition to glacier area, glacier length and elevation range are also used as predictors. Using this multivariate scaling approach, together with the Randolph Glacier Inventory V3.2 for Svalbard and Jan Mayen, we obtain a regional volume estimate of 6700 ± 835 km3, or 17 ± 2 mm of sea-level equivalent (SLE). This result lies in the mid- to low range of recently published estimates, which show values as varied as 13 and 24 mm SLE. We assess the sensitivity of the scaling exponents to glacier characteristics such as size, aspect ratio and average slope, and find that the volume of steep-slope and cirque-type glaciers is not very sensitive to changes in glacier area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processes of founding and expanding cities in coastal areas have undergone great changes over time driven by environmental conditions. Coastal settlements looked for places above flood levels and away from swamps and other wetlands whenever possible. As populations grew, cities were extending trying to avoid low and wet lands. No city has been able to limit its growth. The risk of flooding can never be eliminated, but only reduced to the extent possible. Flooding of coastal areas is today dramatically attributed to eustasic sea level rise caused by global climate change. This can be inaccurate. Current climate change is generating an average sea level upward trend, but other regional and local factors result in this trend being accentuated in some places or attenuated, and even reversed, in others. Then, the intensity and frequency of coastal flooding around the planet, although not so much as a unique result of this general eustasic elevation, but rather of the superposition of marine and crustal dynamic elements, the former also climate-related, which give rise to a temporary raising in average sea level in the short term. Since the Little Ice Age the planet has been suffering a global warming change leading to sea level rise. The idea of being too obeying to anthropogenic factors may be attributed to Arrhenius (1896), though it is of much later highlight after the sixties of the last century. Never before, the human factor had been able of such an influence on climate. However, other types of changes in sea levels became apparent, resulting from vertical movements of the crust, modifications of sea basins due to continents fracturing, drifting and coming together, or to different types of climate patterns. Coastal zones are then doubly susceptible to floods. Precipitation immediately triggers pluvial flooding. If it continues upland or when snow and glaciers melt eventually fluvial flooding can occur. The urban development presence represents modifying factors. Additional interference is caused by river and waste water drainage systems. Climate also influences sea levels in coastal areas, where tides as well as the structure and dynamic of the geoid and its crust come into play. From the sea, waters can flood and break or push back berms and other coastline borders. The sea level, controlling the mouth of the main channel of the basin's drainage system, is ultimately what governs flood levels. A temporary rise in sea level acts as a dam at the mouth. Even in absence of that global change, so, floods are likely going to increase in many urban coastal areas. Some kind of innovative methodologies and practices should be needed to get more flood resilience cities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The term cryosphere is used to refer to all portions of the Earth surface where water appears in solid form. This includes the snow cover; sea, lake and river ice; glaciers, ice caps and ice sheets; and permafrost. The aim of this contribution is to present the current state of the cryosphere. Emphasis will be given to sea ice and continental ice masses (glaciers, ice caps and ice sheets), and the contribution of the losses from the latter to sea level rise (SLR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amundsenisen is an ice field, 80 km2 in area, located in Southern Spitsbergen, Svalbard. Radio-echo sounding measurements at 20 MHz show high intensity returns from a nearly flat basal reflector at four zones, all of them with ice thickness larger than 500m. These reflections suggest possible subglacial lakes. To determine whether basal liquid water is compatible with current pressure and temperature conditions, we aim at applying a thermo mechanical model with a free boundary at the bed defined as solution of a Stefan problem for the interface ice-subglaciallake. The complexity of the problem suggests the use of a bi-dimensional model, but this requires that well-defined flowlines across the zones with suspected subglacial lakes are available. We define these flow lines from the solution of a three-dimensional dynamical model, and this is the main goal of the present contribution. We apply a three-dimensional full-Stokes model of glacier dynamics to Amundsenisen icefield. We are mostly interested in the plateau zone of the icefield, so we introduce artificial vertical boundaries at the heads of the main outlet glaciers draining Amundsenisen. At these boundaries we set velocity boundary conditions. Velocities near the centres of the heads of the outlets are known from experimental measurements. The velocities at depth are calculated according to a SIA velocity-depth profile, and those at the rest of the transverse section are computed following Nye’s (1952) model. We select as southeastern boundary of the model domain an ice divide, where we set boundary conditions of zero horizontal velocities and zero vertical shear stresses. The upper boundary is a traction-free boundary. For the basal boundary conditions, on the zones of suspected subglacial lakes we set free-slip boundary conditions, while for the rest of the basal boundary we use a friction law linking the sliding velocity to the basal shear stress,in such a way that, contrary to the shallow ice approximation, the basal shear stress is not equal to the basal driving stress but rather part of the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaciers on King George Island, Antarctica, have shown retreat and surface lowering in recent decades, concurrent with increasing air temperatures. A large portion of the glacier perimeter is ocean-terminating, suggesting possible large mass losses due to calving and submarine melting. Here we estimate the ice discharge into the ocean for the King George Island ice cap. L-band synthetic aperture radar images covering the time-span January 2008 to January 2011 over King George Island are processed using an intensity-tracking algorithm to obtain surface velocity measurements. Pixel offsets from 40 pairs of radar images are analysed and inverted to estimate a weighted average surface velocity field. Ice thicknesses are derived from simple principles of ice flow mechanics using the computed surface velocity fields and in situ thickness data. The maximum ice surface speeds reach mayor que 225 m/yr, and the total ice discharge for the analysed flux gates of King George Island is estimated to be 0.720+/-0.428 Gt/yr, corresponding to a specific mass loss of 0.64+/-0.38 m w.e./yr over the area of the entire ice cap (1127 km2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that the Amundsenisen Icefield in Southern Spitzbergen (Svalbard achipelago) is temperate with an upper layer of snow and firn. It is an accumulation area and, though ice/water mass balance is clearly subject to time evolution, observation data on the long-term elevation changes over the past 40 years (Nuth et al., 2010) allow to assume constant icefield surface. Within our study of the plausibility of a subglacial lake (Glowacki et al., 2007), here, we focus on the sensitivity of the system to the thermal effect of the firn and snow layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the outstanding problems of the modelling of temperate ice dynamics is the limited knowledge on the rheology of temperate ice and, in particular, on how the rate factor depends on the liquid water content. Though it is well known that the rate factor depends strongly on the water content, in practice the only available experimentally-based relationship is that by Duval (1977), which is only valid for water contents up to 1%. However, actual water contents found in temperate and polythermal glaciers are sometimes substantially larger.