6 resultados para GROWTH-MECHANISM

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work reports on the selective area growth mechanism of green-emitting InGaN/GaN nanocolumns. The evolution of the morphology of the InGaN segment is found to depend critically on the nominal III/V ratio as well as the diameter of the GaN section. In addition, the In distribution inside the InGaN segment is found to depend on the local III/V and In/Ga ratios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The initial reaction in the pathway leading to the production of indole-3-acetic acid (IAA) in plants is the reaction between chorismate and glutamine to produce anthranilate, catalysed by the enzyme anthranilate synthase (ASA; EC 4.1.3.27). Compared with non-transgenic controls, leaves of transgenic poplar with ectopic expression of the pine cytosolic glutamine synthetase (GS1a; EC 6.3.1.2) produced significantly greater glutamine and significantly enhanced ASA a-subunit (ASA1) transcript and protein (approximately 130% and 120% higher than in the untransformed controls, respectively). Similarly, tobacco leaves fed with 30 mM glutamine and 2 mM chorismate showed enhanced ASA1 transcript and protein (175% and 90% higher than controls, respectively). Furthermore, free IAA was significantly elevated both in leaves of GS1a transgenic poplar and in tobacco leaves fed with 30 mM glutamine and 2 mM chorismate. These results indicated that enhanced cellular glutamine may account for the enhanced growth in GS transgenic poplars through the regulation of auxin biosynthesis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bienaventurada mine operates a polymetallic Ag-Pb-Zn (Cu, Au) vein system of the low sulphidation epithermal type. Fluid inclusions, FI, are abundant in quartz, sphalerite and adularia. FI petrography demonstrates typical primary growth zoning which occurs frequently in crystalline quartz, and defines the most common primary FI. These are usually very small, but several types of primary, P, and secondary, S, FI Assemblages (FIAs) comprising FI of measurable size (3 to > 100 μm) can also be identified through careful petrographic work. The fluids are aqueous and undersaturated, and no evidence of CO2 was found; the degree of fill is usually high (~70-80 %) in the L-rich inclusions, but extremely low in V-rich inclusions. The measured microthermometric values are very consistent in the FIAs selected; they are for the most part roughly similar in the P and S assemblages: the median is typically ~258ºC for total homogenization temperatures, Th, and -1.5 ºC for ice melting temperatures, Tm (corresponding to 2.57 wt% NaCl eq). The widespread occurrence of L-rich and V-rich FI in the same FIA and the consistent Th values point to an extensive boiling system along the vein. In these conditions, Th equals T of trapping, and the ores are assumed to have been precipitated from an aqueous low salinity boiling fluid, of likely meteoric origin, at some 250-280º C, under ~500 m hydrostatic head.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mycelial growth of 18 Fusarium solani strains isolated from sea beds of the south-eastern coast of Spain was tested on potato-dextrose agar adjusted to different osmotic potentials with either KCl or NACl (-1.50 to -144.54 bars) in 10ºC intervals ranging from 15 to 35ºC. Fungal growth was determined by measuring colony diameter after 4 days incubation. Mycelial growth was maximal at 25ºC. The quantity and frequency pattern of mycelial growth of F. solani differ significantly at 15 and 25ºC, with maximal occurring at the highest water potential tested (-1.50 bars); and at 35ºC, with a maximal mycelial growth at -13.79 bars. The effect of water potential was independent of salt composition. The general growth pattern of F. solani showed declining growth at potentials below -41.79 bars. Fungal growth at 35ºC was always higher than that growth at 15ºC, of all the water potentials tested. Significant differences observed in the response of mycelia to water potential and temperature as main and interactive effects. The viability of cultures was increasingly inhibited as the water potential dropped, but some growth was still observed at -99.56 bars. These findings could indicate that marine strains of F. solani have a physiological mechanism that permits survival in environments with low water potential. The observed differences in viability and the magnitude growth could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mycelial growth of 10 Fusarium culmorum strains isolated from water of the Andarax riverbed in the provinces of Granada and Almeria in southeastern Spain was tested on potato-dextroseagar adjusted to different osmotic potentials with either KCl or NaCl (−1.50 to−144.54 bars) at 10◦C intervals ranging from15◦ to 35◦C. Fungal growth was determined by measuring colony diameter after 4 d of incubation. Mycelial growth was maximal at 25◦C. The quantity and capacity of mycelial growth of F. culmorum were similar at 15 and 25◦C, with maximal growth occurring at −13.79 bars water potential and a lack of growth at 35◦C. The effect of water potential was independent of salt composition. The general growth pattern of Fusarium culmorum growth declined at potentials below −13.79 bars. Fungal growth at 25◦C was always greater than growth at 15◦C, at all of the water potentials tested. Significant differences were observed in the response ofmycelia to water potential and temperature as main and interactive effects. The number of isolates that showed growth was increasingly inhibited as the water potential dropped, but some growth was still observable at −99.56 bars. These findings could indicate that F. culmorum strains isolated from water have a physiological mechanism that permits survival in environments with low water potential. Propagules of Fusarium culmorum are transported long distances by river water, which could explain the severity of diseases caused by F.culmorum on cereal plants irrigated with river water and its interaction under hydric stress ormoderate soil salinity. The observed differences in growth magnitude and capacity could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally demonstrate a sigmoidal variation of the composition profile across semiconductor heterointerfaces. The wide range of material systems (III-arsenides, III-antimonides, III-V quaternary compounds, III-nitrides) exhibiting such a profile suggests a universal behavior. We show that sigmoidal profiles emerge from a simple model of cooperative growth mediated by twodimensional island formation, wherein cooperative effects are described by a specific functional dependence of the sticking coefficient on the surface coverage. Experimental results confirm that, except in the very early stages, island growth prevails over nucleation as the mechanism governing the interface development and ultimately determines the sigmoidal shape of the chemical profile in these two-dimensional grown layers. In agreement with our experimental findings, the model also predicts a minimum value of the interfacial width, with the minimum attainable value depending on the chemical identity of the species.