52 resultados para Fuel burnup (Nuclear engineering)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, computer simulators are becoming basic tools for education and training in many engineering fields. In the nuclear industry, the role of simulation for training of operators of nuclear power plants is also recognized of the utmost relevance. As an example, the International Atomic Energy Agency sponsors the development of nuclear reactor simulators for education, and arranges the supply of such simulation programs. Aware of this, in 2008 Gas Natural Fenosa, a Spanish gas and electric utility that owns and operate nuclear power plants and promotes university education in the nuclear technology field, provided the Department of Nuclear Engineering of Universidad Politécnica de Madrid with the Interactive Graphic Simulator (IGS) of “José Cabrera” (Zorita) nuclear power plant, an industrial facility whose commercial operation ceased definitively in April 2006. It is a state-of-the-art full-scope real-time simulator that was used for training and qualification of the operators of the plant control room, as well as to understand and analyses the plant dynamics, and to develop, qualify and validate its emergency operating procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this course, conducted by Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE) is to pass on basic knowledge about Science and Nuclear Technology to the general public, mostly students and introduce them to its most relevant points. The purposes of this course are to provide general information, to answer the most common questions about Nuclear Energy and to motivate the young students to start a career in nuclear. Therefore, it is directed mainly to high school and university students, but also to general people that wants to learn about the key issues of such an important matter in our society. Anybody could attend the course, as no specific scientific education is required. The course is done at least once a year, during the Annual Meeting of the Spanish Nuclear Society, which takes place in a different Spanish city each time. The course is done also to whichever university or institution that asks for it to JJNN, with the only limit of the presenter´s availability. The course is divided into the following chapters: Physical nuclear and radiation principles, Nuclear power plants, Nuclear safety, Nuclear fuel, Radioactive waste, Decommission of nuclear facilities, Future nuclear power plants, Other uses of nuclear technology, Nuclear energy, climate change and sustainable development. The course is divided into 15 minutes lessons on the above topics, imparted by young professionals, experts in the field that belongs either to the Spanish Young Generation in Nuclear, either to companies and institutions related with nuclear energy. At the end of the course, a 200 pages book with the contents of the course is handed to every member of the audience. This book is also distributed in other course editions at high schools and universities in order to promote the scientific dissemination of the Nuclear Technology. As an extra motivation, JJNN delivers a course certificate to the assistants. At the end of the last edition course, in Santiago de Compostela, the assistants were asked to provide a feedback about it. Some really interesting lessons were learned, that will be very useful to improve next editions of the course. As a general conclusion of the courses it can be said that many of the students that have assisted to the course have increased their motivation in the nuclear field, and hopefully it will help the young talents to choose the nuclear field to develop their careers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45?46%, either in the form of Hydrogen, electricity, or both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A “Collaborative Agreement” involving the collective participation of our students in their last year of our “Nuclear Engineering Master Degree Programme” for: “the review and capturing of selected spent fuel isotopic assay data sets to be included in the new SFCOMPO database"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una apropiada evaluación de los márgenes de seguridad de una instalación nuclear, por ejemplo, una central nuclear, tiene en cuenta todas las incertidumbres que afectan a los cálculos de diseño, funcionanmiento y respuesta ante accidentes de dicha instalación. Una fuente de incertidumbre son los datos nucleares, que afectan a los cálculos neutrónicos, de quemado de combustible o activación de materiales. Estos cálculos permiten la evaluación de las funciones respuesta esenciales para el funcionamiento correcto durante operación, y también durante accidente. Ejemplos de esas respuestas son el factor de multiplicación neutrónica o el calor residual después del disparo del reactor. Por tanto, es necesario evaluar el impacto de dichas incertidumbres en estos cálculos. Para poder realizar los cálculos de propagación de incertidumbres, es necesario implementar metodologías que sean capaces de evaluar el impacto de las incertidumbres de estos datos nucleares. Pero también es necesario conocer los datos de incertidumbres disponibles para ser capaces de manejarlos. Actualmente, se están invirtiendo grandes esfuerzos en mejorar la capacidad de analizar, manejar y producir datos de incertidumbres, en especial para isótopos importantes en reactores avanzados. A su vez, nuevos programas/códigos están siendo desarrollados e implementados para poder usar dichos datos y analizar su impacto. Todos estos puntos son parte de los objetivos del proyecto europeo ANDES, el cual ha dado el marco de trabajo para el desarrollo de esta tesis doctoral. Por tanto, primero se ha llevado a cabo una revisión del estado del arte de los datos nucleares y sus incertidumbres, centrándose en los tres tipos de datos: de decaimiento, de rendimientos de fisión y de secciones eficaces. A su vez, se ha realizado una revisión del estado del arte de las metodologías para la propagación de incertidumbre de estos datos nucleares. Dentro del Departamento de Ingeniería Nuclear (DIN) se propuso una metodología para la propagación de incertidumbres en cálculos de evolución isotópica, el Método Híbrido. Esta metodología se ha tomado como punto de partida para esta tesis, implementando y desarrollando dicha metodología, así como extendiendo sus capacidades. Se han analizado sus ventajas, inconvenientes y limitaciones. El Método Híbrido se utiliza en conjunto con el código de evolución isotópica ACAB, y se basa en el muestreo por Monte Carlo de los datos nucleares con incertidumbre. En esta metodología, se presentan diferentes aproximaciones según la estructura de grupos de energía de las secciones eficaces: en un grupo, en un grupo con muestreo correlacionado y en multigrupos. Se han desarrollado diferentes secuencias para usar distintas librerías de datos nucleares almacenadas en diferentes formatos: ENDF-6 (para las librerías evaluadas), COVERX (para las librerías en multigrupos de SCALE) y EAF (para las librerías de activación). Gracias a la revisión del estado del arte de los datos nucleares de los rendimientos de fisión se ha identificado la falta de una información sobre sus incertidumbres, en concreto, de matrices de covarianza completas. Además, visto el renovado interés por parte de la comunidad internacional, a través del grupo de trabajo internacional de cooperación para evaluación de datos nucleares (WPEC) dedicado a la evaluación de las necesidades de mejora de datos nucleares mediante el subgrupo 37 (SG37), se ha llevado a cabo una revisión de las metodologías para generar datos de covarianza. Se ha seleccionando la actualización Bayesiana/GLS para su implementación, y de esta forma, dar una respuesta a dicha falta de matrices completas para rendimientos de fisión. Una vez que el Método Híbrido ha sido implementado, desarrollado y extendido, junto con la capacidad de generar matrices de covarianza completas para los rendimientos de fisión, se han estudiado diferentes aplicaciones nucleares. Primero, se estudia el calor residual tras un pulso de fisión, debido a su importancia para cualquier evento después de la parada/disparo del reactor. Además, se trata de un ejercicio claro para ver la importancia de las incertidumbres de datos de decaimiento y de rendimientos de fisión junto con las nuevas matrices completas de covarianza. Se han estudiado dos ciclos de combustible de reactores avanzados: el de la instalación europea para transmutación industrial (EFIT) y el del reactor rápido de sodio europeo (ESFR), en los cuales se han analizado el impacto de las incertidumbres de los datos nucleares en la composición isotópica, calor residual y radiotoxicidad. Se han utilizado diferentes librerías de datos nucleares en los estudios antreriores, comparando de esta forma el impacto de sus incertidumbres. A su vez, mediante dichos estudios, se han comparando las distintas aproximaciones del Método Híbrido y otras metodologías para la porpagación de incertidumbres de datos nucleares: Total Monte Carlo (TMC), desarrollada en NRG por A.J. Koning y D. Rochman, y NUDUNA, desarrollada en AREVA GmbH por O. Buss y A. Hoefer. Estas comparaciones demostrarán las ventajas del Método Híbrido, además de revelar sus limitaciones y su rango de aplicación. ABSTRACT For an adequate assessment of safety margins of nuclear facilities, e.g. nuclear power plants, it is necessary to consider all possible uncertainties that affect their design, performance and possible accidents. Nuclear data are a source of uncertainty that are involved in neutronics, fuel depletion and activation calculations. These calculations can predict critical response functions during operation and in the event of accident, such as decay heat and neutron multiplication factor. Thus, the impact of nuclear data uncertainties on these response functions needs to be addressed for a proper evaluation of the safety margins. Methodologies for performing uncertainty propagation calculations need to be implemented in order to analyse the impact of nuclear data uncertainties. Nevertheless, it is necessary to understand the current status of nuclear data and their uncertainties, in order to be able to handle this type of data. Great eórts are underway to enhance the European capability to analyse/process/produce covariance data, especially for isotopes which are of importance for advanced reactors. At the same time, new methodologies/codes are being developed and implemented for using and evaluating the impact of uncertainty data. These were the objectives of the European ANDES (Accurate Nuclear Data for nuclear Energy Sustainability) project, which provided a framework for the development of this PhD Thesis. Accordingly, first a review of the state-of-the-art of nuclear data and their uncertainties is conducted, focusing on the three kinds of data: decay, fission yields and cross sections. A review of the current methodologies for propagating nuclear data uncertainties is also performed. The Nuclear Engineering Department of UPM has proposed a methodology for propagating uncertainties in depletion calculations, the Hybrid Method, which has been taken as the starting point of this thesis. This methodology has been implemented, developed and extended, and its advantages, drawbacks and limitations have been analysed. It is used in conjunction with the ACAB depletion code, and is based on Monte Carlo sampling of variables with uncertainties. Different approaches are presented depending on cross section energy-structure: one-group, one-group with correlated sampling and multi-group. Differences and applicability criteria are presented. Sequences have been developed for using different nuclear data libraries in different storing-formats: ENDF-6 (for evaluated libraries) and COVERX (for multi-group libraries of SCALE), as well as EAF format (for activation libraries). A revision of the state-of-the-art of fission yield data shows inconsistencies in uncertainty data, specifically with regard to complete covariance matrices. Furthermore, the international community has expressed a renewed interest in the issue through the Working Party on International Nuclear Data Evaluation Co-operation (WPEC) with the Subgroup (SG37), which is dedicated to assessing the need to have complete nuclear data. This gives rise to this review of the state-of-the-art of methodologies for generating covariance data for fission yields. Bayesian/generalised least square (GLS) updating sequence has been selected and implemented to answer to this need. Once the Hybrid Method has been implemented, developed and extended, along with fission yield covariance generation capability, different applications are studied. The Fission Pulse Decay Heat problem is tackled first because of its importance during events after shutdown and because it is a clean exercise for showing the impact and importance of decay and fission yield data uncertainties in conjunction with the new covariance data. Two fuel cycles of advanced reactors are studied: the European Facility for Industrial Transmutation (EFIT) and the European Sodium Fast Reactor (ESFR), and response function uncertainties such as isotopic composition, decay heat and radiotoxicity are addressed. Different nuclear data libraries are used and compared. These applications serve as frameworks for comparing the different approaches of the Hybrid Method, and also for comparing with other methodologies: Total Monte Carlo (TMC), developed at NRG by A.J. Koning and D. Rochman, and NUDUNA, developed at AREVA GmbH by O. Buss and A. Hoefer. These comparisons reveal the advantages, limitations and the range of application of the Hybrid Method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful experience of the Jose Cabrera Nuclear Power Plant Interactive Graphical Simulator implementation in the Nuclear Engineering Department in the Universidad Polite´cnica de Madrid, for the Education and Training of nuclear engineers is shown in this paper. The paper starts with the objectives and the description of the Simulator Aula, and the methodology of work following the recommendations of the IAEA for the use of nuclear reactor simulators for education. The practices and material prepared for the students, as well as the operational and accident situations simulated are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help spread knowledge about nuclear energy, not only pointing out its advantages and its role in our society, but also trying to correct some of the ideas that are due to the biased information and to the lack of knowledge. To try to have success in that goal, some high school lectures were taught and it has been organized regularly a Basic Course on Nuclear Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help transferring the knowledge between those generations in the way that it can be possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main goals of Spanish Young Generation (JJNN) is to spread knowledge about nuclear energy, not only pointing out its advantages and its role in our society, but also trying to correct some of the ideas that are due to the biased information and to the lack of knowledge. With this goal in mind, lectures were given in several high schools, aimed at students ranging from 14 to 18 years old. This paper explains the experience accumulated during those talks and the conclusions that can be drawn, so as to better focus the communication about nuclear energy, especially the one aimed at a young public. In order to evaluate the degree of knowledge and information on a specific topic of a given group of individuals, statistical methods must be used. At the beginning of each lecture (and sometimes at the end, in order to evaluate the impact of the talk) the students were submitted to a short survey conducted by Spanish Young Generation. It consisted in eight questions, dealing with the relation between the main environmental issues (global warming, acid rain, radioactive waste…) and nuclear energy. The answers can be surprising, especially for professionals of the nuclear field who, since they are so familiar with this topic, often forget that this is just the case of a minority of people. A better knowledge of the degree of information of a given group enables to focus and personalize the communication. Another communication tool is the direct contact with students: it starts with their questions, which can then lead to a small debate. If the surveys inform about the topics they are unaware of, the direct exchange with them enables to find the most effective way to provide them the information. Of course, it depends a lot on the public attending the talk (age, background…) and on the debate following the talk: a good communication, adapted to the public, is necessary. Therefore, the outcome of the performed exercise is that Spanish teenagers have still a lack of knowledge about nuclear energy. We can learn that items that are evident for nuclear young professionals are unknown for high school teenagers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN) is a non-profit organization and a commission of the Spanish Nuclear Society (SNE). The Universidad Politécnica de Madrid (Technical University of Madrid, UPM) is one of the most prestigious technical universities of Spain, and has a very strong curriculum in nuclear engineering training and research. Finishing 2009, JJNN and the UPM started to plan a new and first-of-a-kind Seminar in Nuclear Safety focused on the Advanced Reactors (Generation III, III+ and IV). The scope was to make a general description of the safety in the new reactors, comparing them with the built Generation II reactors from a technical point of view but simple and without the need of strong background in nuclear engineering to try to be interesting for the most number of people possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As in each country of Europe with nuclear power, there is a clear gap between those generation that have built the power plants in the eighties and the new generations with less than ten years of experience in the nuclear field. From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares) has as an important scope to help transferring the knowledge between those generations in the way that it can be possible. Some years ago, JJNN have started organizing seminars periodically trying to cover as many areas as possible in the nuclear engineering field, and some of them outside the industry but related with it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magazine of the Spanish Nuclear Society (SNE), “Nuclear España” is a scientific-technical publication with almost thirty years of uninterrupted edition and more than 300 numbers published. Their pages approach technical subjects related to the nuclear energy, as well as the activities developed by the SNE, especially in national and international meetings. The main part of the magazine is composed by articles written by known specialist of the energy industry. One of the top goals of the magazine is to help on transferring the knowledge from the generation that built the nuclear power plants in Spain and the new generation of professionals that have started its nuclear career in the last years. Each number is monographic, trying to cover as many aspects on an issue as it is possible, with collaborations from the companies, the research centers and universities that helps to have complementary points of view. On the other hand the articles help to deep in the issue´s topic, broadening the view of the readers about the nuclear field and helping to share knowledge across the industry. The news section of the Magazine picks up the actuality of the sector as a whole. The editorial section reflects the opinion of the SNE Governing Board and the Magazine Committee on the subjects of interest in this field. On the other hand, the monthly interview sets out the professional outstanding opinions. With a total of eleven numbers per year, three of them have a noticeable international character: the one dedicated to the operative experiences on the Spanish and European nuclear power plants, the monographic issue devoted tothe Annual Meeting of the SNE and the international issue, which covers the last activities of the Spanish industry in international projects. Both first are bilingual issues (Spanish-English), whereas the international edition is published completely in English. Besides its diffusion through all the members of the SNE, the Magazine is distributed, in the national scope, to companies and organisms related to the nuclear power, universities, research centers, representatives of the Central, Autonomic and Local Administrations, mass media and communication professionals. It is also sent to the utilities and research centers in Europe, United States, South America and Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present Master/Doctorate in Nuclear Science and Technology programme implemented in the Department of Nuclear Engineering of the Universidad Politécnica de Madrid (NED-UPM) has the excellence qualification by the Spanish Ministry of Education. One of the main of this programme is the training for the development of methodologies of simulation, design and advanced analysis, including experimental tools, necessary in research and in professional work in the nuclear field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

panish Young Generation in Nuclear (Jóvenes Nucleares) is a commission of the Spanish Nuclear Society (SNE), whose main goals are to spread knowledge about nuclear energy among the society. Following this motivation, two Seminars have been carried out with the collaboration of the Technical University of Madrid: The Seminar of Nuclear Safety in Advanced Reactors (SRA) and the Seminar of Nuclear Fusion (SFN). The first one, which has been celebrated every year since 2010, aims to show clearly the advances that have been obtained in the section of safety with the new reactors, from a technical but simple point of view and without needing great previous nuclear engineering knowledge. The second one, which first edition was held in 2011, aims to give a general overview of the past, present and future situation of nuclear fusion technology, and was born as a result of the increasing interest of our Spanish Young Generation members in this technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN) is a non-profit organization that depends on the Spanish Nuclear Society (SNE). The Universidad Politécnica de Madrid (Technical University of Madrid, UPM) was chosen to host the Seminar as it is one of the most prestigious technical universities of Spain, and has a very strong curriculum in nuclear engineering training and research. Both, the UPM and the SNE, supported strongly the seminar: the opening session was conducted by the member of to board of directors of the Spanish Nuclear Society and Nuclear Engineering professor of the UPM, Emilio Mínguez and the closing session was conducted by the director of the Nuclear Fusion Institute (UPM).