4 resultados para Fault model
em Universidad Politécnica de Madrid
Resumo:
In this paper, we introduce B2DI model that extends BDI model to perform Bayesian inference under uncertainty. For scalability and flexibility purposes, Multiply Sectioned Bayesian Network (MSBN) technology has been selected and adapted to BDI agent reasoning. A belief update mechanism has been defined for agents, whose belief models are connected by public shared beliefs, and the certainty of these beliefs is updated based on MSBN. The classical BDI agent architecture has been extended in order to manage uncertainty using Bayesian reasoning. The resulting extended model, so-called B2DI, proposes a new control loop. The proposed B2DI model has been evaluated in a network fault diagnosis scenario. The evaluation has compared this model with two previously developed agent models. The evaluation has been carried out with a real testbed diagnosis scenario using JADEX. As a result, the proposed model exhibits significant improvements in the cost and time required to carry out a reliable diagnosis.
Resumo:
Los sistemas técnicos son cada vez más complejos, incorporan funciones más avanzadas, están más integrados con otros sistemas y trabajan en entornos menos controlados. Todo esto supone unas condiciones más exigentes y con mayor incertidumbre para los sistemas de control, a los que además se demanda un comportamiento más autónomo y fiable. La adaptabilidad de manera autónoma es un reto para tecnologías de control actualmente. El proyecto de investigación ASys propone abordarlo trasladando la responsabilidad de la capacidad de adaptación del sistema de los ingenieros en tiempo de diseño al propio sistema en operación. Esta tesis pretende avanzar en la formulación y materialización técnica de los principios de ASys de cognición y auto-consciencia basadas en modelos y autogestión de los sistemas en tiempo de operación para una autonomía robusta. Para ello el trabajo se ha centrado en la capacidad de auto-conciencia, inspirada en los sistemas biológicos, y se ha explorado la posibilidad de integrarla en la arquitectura de los sistemas de control. Además de la auto-consciencia, se han explorado otros temas relevantes: modelado funcional, modelado de software, tecnología de los patrones, tecnología de componentes, tolerancia a fallos. Se ha analizado el estado de la técnica en los ámbitos pertinentes para las cuestiones de la auto-consciencia y la adaptabilidad en sistemas técnicos: arquitecturas cognitivas, control tolerante a fallos, y arquitecturas software dinámicas y computación autonómica. El marco teórico de ASys existente de sistemas autónomos cognitivos ha sido adaptado para servir de base para este análisis de autoconsciencia y adaptación y para dar sustento conceptual al posterior desarrollo de la solución. La tesis propone una solución general de diseño para la construcción de sistemas autónomos auto-conscientes. La idea central es la integración de un meta-controlador en la arquitectura de control del sistema autónomo, capaz de percibir la estado funcional del sistema de control y, si es necesario, reconfigurarlo en tiempo de operación. Esta solución de metacontrol se ha formalizado en cuatro patrones de diseño: i) el Patrón Metacontrol, que define la integración de un subsistema de metacontrol, responsable de controlar al propio sistema de control a través de la interfaz proporcionada por su plataforma de componentes, ii) el patrón Bucle de Control Epistémico, que define un bucle de control cognitivo basado en el modelos y que se puede aplicar al diseño del metacontrol, iii) el patrón de Reflexión basada en Modelo Profundo propone una solución para construir el modelo ejecutable utilizado por el meta-controlador mediante una transformación de modelo a modelo a partir del modelo de ingeniería del sistema, y, finalmente, iv) el Patrón Metacontrol Funcional, que estructura el meta-controlador en dos bucles, uno para el control de la configuración de los componentes del sistema de control, y otro sobre éste, controlando las funciones que realiza dicha configuración de componentes; de esta manera las consideraciones funcionales y estructurales se desacoplan. La Arquitectura OM y el metamodelo TOMASys son las piezas centrales del marco arquitectónico desarrollado para materializar la solución compuesta de los patrones anteriores. El metamodelo TOMASys ha sido desarrollado para la representación de la estructura y su relación con los requisitos funcionales de cualquier sistema autónomo. La Arquitectura OM es un patrón de referencia para la construcción de una metacontrolador integrando los patrones de diseño propuestos. Este meta-controlador se puede integrar en la arquitectura de cualquier sistema control basado en componentes. El elemento clave de su funcionamiento es un modelo TOMASys del sistema decontrol, que el meta-controlador usa para monitorizarlo y calcular las acciones de reconfiguración necesarias para adaptarlo a las circunstancias en cada momento. Un proceso de ingeniería, complementado con otros recursos, ha sido elaborado para guiar la aplicación del marco arquitectónico OM. Dicho Proceso de Ingeniería OM define la metodología a seguir para construir el subsistema de metacontrol para un sistema autónomo a partir del modelo funcional del mismo. La librería OMJava proporciona una implementación del meta-controlador OM que se puede integrar en el control de cualquier sistema autónomo, independientemente del dominio de la aplicación o de su tecnología de implementación. Para concluir, la solución completa ha sido validada con el desarrollo de un robot móvil autónomo que incorpora un meta-controlador con la Arquitectura OM. Las propiedades de auto-consciencia y adaptación proporcionadas por el meta-controlador han sido validadas en diferentes escenarios de operación del robot, en los que el sistema era capaz de sobreponerse a fallos en el sistema de control mediante reconfiguraciones orquestadas por el metacontrolador. ABSTRACT Technical systems are becoming more complex, they incorporate more advanced functionalities, they are more integrated with other systems and they are deployed in less controlled environments. All this supposes a more demanding and uncertain scenario for control systems, which are also required to be more autonomous and dependable. Autonomous adaptivity is a current challenge for extant control technologies. The ASys research project proposes to address it by moving the responsibility for adaptivity from the engineers at design time to the system at run-time. This thesis has intended to advance in the formulation and technical reification of ASys principles of model-based self-cognition and having systems self-handle at runtime for robust autonomy. For that it has focused on the biologically inspired capability of self-awareness, and explored the possibilities to embed it into the very architecture of control systems. Besides self-awareness, other themes related to the envisioned solution have been explored: functional modeling, software modeling, patterns technology, components technology, fault tolerance. The state of the art in fields relevant for the issues of self-awareness and adaptivity has been analysed: cognitive architectures, fault-tolerant control, and software architectural reflection and autonomic computing. The extant and evolving ASys Theoretical Framework for cognitive autonomous systems has been adapted to provide a basement for this selfhood-centred analysis and to conceptually support the subsequent development of our solution. The thesis proposes a general design solution for building self-aware autonomous systems. Its central idea is the integration of a metacontroller in the control architecture of the autonomous system, capable of perceiving the functional state of the control system and reconfiguring it if necessary at run-time. This metacontrol solution has been formalised into four design patterns: i) the Metacontrol Pattern, which defines the integration of a metacontrol subsystem, controlling the domain control system through an interface provided by its implementation component platform, ii) the Epistemic Control Loop pattern, which defines a modelbased cognitive control loop that can be applied to the design of such a metacontroller, iii) the Deep Model Reflection pattern proposes a solution to produce the online executable model used by the metacontroller by model-to-model transformation from the engineering model, and, finally, iv) the Functional Metacontrol pattern, which proposes to structure the metacontroller in two loops, one for controlling the configuration of components of the controller, and another one on top of the former, controlling the functions being realised by that configuration; this way the functional and structural concerns become decoupled. The OM Architecture and the TOMASys metamodel are the core pieces of the architectural framework developed to reify this patterned solution. The TOMASys metamodel has been developed for representing the structure and its relation to the functional requirements of any autonomous system. The OM architecture is a blueprint for building a metacontroller according to the patterns. This metacontroller can be integrated on top of any component-based control architecture. At the core of its operation lies a TOMASys model of the control system. An engineering process and accompanying assets have been constructed to complete and exploit the architectural framework. The OM Engineering Process defines the process to follow to develop the metacontrol subsystem from the functional model of the controller of the autonomous system. The OMJava library provides a domain and application-independent implementation of an OM Metacontroller than can be used in the implementation phase of OMEP. Finally, the complete solution has been validated in the development of an autonomous mobile robot that incorporates an OM metacontroller. The functional selfawareness and adaptivity properties achieved thanks to the metacontrol system have been validated in different scenarios. In these scenarios the robot was able to overcome failures in the control system thanks to reconfigurations performed by the metacontroller.
Resumo:
In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme.
Resumo:
La presente tesis doctoral contribuye al problema del diagnóstico autonómico de fallos en redes de telecomunicación. En las redes de telecomunicación actuales, las operadoras realizan tareas de diagnóstico de forma manual. Dichas operaciones deben ser llevadas a cabo por ingenieros altamente cualificados que cada vez tienen más dificultades a la hora de gestionar debidamente el crecimiento exponencial de la red tanto en tamaño, complejidad y heterogeneidad. Además, el advenimiento del Internet del Futuro hace que la demanda de sistemas que simplifiquen y automaticen la gestión de las redes de telecomunicación se haya incrementado en los últimos años. Para extraer el conocimiento necesario para desarrollar las soluciones propuestas y facilitar su adopción por los operadores de red, se propone una metodología de pruebas de aceptación para sistemas multi-agente enfocada en simplificar la comunicación entre los diferentes grupos de trabajo involucrados en todo proyecto de desarrollo software: clientes y desarrolladores. Para contribuir a la solución del problema del diagnóstico autonómico de fallos, se propone una arquitectura de agente capaz de diagnosticar fallos en redes de telecomunicación de manera autónoma. Dicha arquitectura extiende el modelo de agente Belief-Desire- Intention (BDI) con diferentes modelos de diagnóstico que gestionan las diferentes sub-tareas del proceso. La arquitectura propuesta combina diferentes técnicas de razonamiento para alcanzar su propósito gracias a un modelo estructural de la red, que usa razonamiento basado en ontologías, y un modelo causal de fallos, que usa razonamiento Bayesiano para gestionar debidamente la incertidumbre del proceso de diagnóstico. Para asegurar la adecuación de la arquitectura propuesta en situaciones de gran complejidad y heterogeneidad, se propone un marco de argumentación que permite diagnosticar a agentes que estén ejecutando en dominios federados. Para la aplicación de este marco en un sistema multi-agente, se propone un protocolo de coordinación en el que los agentes dialogan hasta alcanzar una conclusión para un caso de diagnóstico concreto. Como trabajos futuros, se consideran la extensión de la arquitectura para abordar otros problemas de gestión como el auto-descubrimiento o la auto-optimización, el uso de técnicas de reputación dentro del marco de argumentación para mejorar la extensibilidad del sistema de diagnóstico en entornos federados y la aplicación de las arquitecturas propuestas en las arquitecturas de red emergentes, como SDN, que ofrecen mayor capacidad de interacción con la red. ABSTRACT This PhD thesis contributes to the problem of autonomic fault diagnosis of telecommunication networks. Nowadays, in telecommunication networks, operators perform manual diagnosis tasks. Those operations must be carried out by high skilled network engineers which have increasing difficulties to properly manage the growing of those networks, both in size, complexity and heterogeneity. Moreover, the advent of the Future Internet makes the demand of solutions which simplifies and automates the telecommunication network management has been increased in recent years. To collect the domain knowledge required to developed the proposed solutions and to simplify its adoption by the operators, an agile testing methodology is defined for multiagent systems. This methodology is focused on the communication gap between the different work groups involved in any software development project, stakeholders and developers. To contribute to overcoming the problem of autonomic fault diagnosis, an agent architecture for fault diagnosis of telecommunication networks is defined. That architecture extends the Belief-Desire-Intention (BDI) agent model with different diagnostic models which handle the different subtasks of the process. The proposed architecture combines different reasoning techniques to achieve its objective using a structural model of the network, which uses ontology-based reasoning, and a causal model, which uses Bayesian reasoning to properly handle the uncertainty of the diagnosis process. To ensure the suitability of the proposed architecture in complex and heterogeneous environments, an argumentation framework is defined. This framework allows agents to perform fault diagnosis in federated domains. To apply this framework in a multi-agent system, a coordination protocol is defined. This protocol is used by agents to dialogue until a reliable conclusion for a specific diagnosis case is reached. Future work comprises the further extension of the agent architecture to approach other managements problems, such as self-discovery or self-optimisation; the application of reputation techniques in the argumentation framework to improve the extensibility of the diagnostic system in federated domains; and the application of the proposed agent architecture in emergent networking architectures, such as SDN, which offers new capabilities of control for the network.