12 resultados para Fatoracao de polinomios

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expresar la solución de una ecuación diferencial como una serie funcional es la base sobre la que se construyen la mayor parte de los métodos numéricos de resolución de ecuaciones diferenciales. En este primer capítulo se muestran dos de las aproximaciones más comunes y utilizadas: serie de potencias (Taylor) y trigonométricas. Entre estas últimas cabe destacar la serie de Fourier como la más conocida, pero existen otras muchas, en particular nos centraremos en la expansión de una función utilizando polinomios de Chebyshev

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo propone una serie de algoritmos con el objetivo de extraer información de conjuntos de datos con redes de neuronas. Se estudian dichos algoritmos con redes de neuronas Enhenced Neural Networks (ENN), debido a que esta arquitectura tiene algunas ventajas cuando se aproximan funciones mediante redes neuronales. En la red ENN los pesos de la matriz principal varián con cada patrón, por lo que se comete un error menor en la aproximación. Las redes de neuronas ENN reúnen la información en los pesos de su red auxiliar, se propone un método para obtener información de la red a través de dichos pesos en formas de reglas y asignando un factor de certeza de dichas reglas. La red ENN obtiene un error cuadrático medio menor que el error teórico de una aproximación matemática por ejemplo mediante polinomios de Taylor. Se muestra como una red ENN, entrenada a partir un conjunto de patrones obtenido de una función de variables reales, sus pesos asociados tienen unas relaciones similares a las que se veri_can con las variables independientes con dicha función de variables reales. Las redes de neuronas ENN aproximan polinomios, se extrae conocimiento de un conjunto de datos de forma similar a la regresión estadística, resolviendo de forma más adecuada el problema de multicolionalidad en caso de existir. Las relaciones a partir de los pesos asociados de la matriz de la red auxiliar se obtienen similares a los coeficientes de una regresión para el mismo conjunto numérico. Una red ENN entrenada a partir de un conjunto de datos de una función boolena extrae el conocimiento a partir de los pesos asociados, y la influencia de las variables de la regla lógica de la función booleana, queda reejada en esos pesos asociados a la red auxiliar de la red ENN. Se plantea una red de base radial (RBF) para la clasificación y predicción en problemas forestales y agrícolas, obteniendo mejores resultados que con el modelo de regresión y otros métodos. Los resultados con una red RBF mejoran al método de regresión si existe colinealidad entre los datos que se dispone y no son muy numerosos. También se detecta que variables tienen más importancia en virtud de la variable pronóstico. Obteniendo el error cuadrático medio con redes RBF menor que con otros métodos, en particular que con el modelo de regresión. Abstract A series of algorithms is proposed in this study aiming at the goal of producing information about data groups with a neural network. These algorithms are studied with Enheced Neural Networks (ENN), owing to the fact that this structure shows sever advantages when the functions are approximated by neural networks. Main matrix weights in th ENN vary on each pattern; so, a smaller error is produced when approximating. The neural network ENN joins the weight information contained in their auxiliary network. Thus, a method to obtain information on the network through those weights is proposed by means of rules adding a certainty factor. The net ENN obtains a mean squared error smaller than the theorical one emerging from a mathematical aproximation such as, for example, by means of Taylor's polynomials. This study also shows how in a neural network ENN trained from a set of patterns obtained through a function of real variables, its associated weights have relationships similar to those ones tested by means of the independent variables connected with such functions of real variables. The neural network ENN approximates polynomials through it information about a set of data may be obtained in a similar way than through statistical regression, solving in this way possible problems of multicollinearity in a more suitable way. Relationships emerging from the associated weights in the auxiliary network matrix obtained are similar to the coeficients corresponding to a regression for the same numerical set. A net ENN trained from a boolean function data set obtains its information from its associated weights. The inuence of the variables of the boolean function logical rule are reected on those weights associated to the net auxiliar of the ENN. A radial basis neural networks (RBF) for the classification and prediction of forest and agricultural problems is proposed. This scheme obtains better results than the ones obtained by means of regression and other methods. The outputs with a net RBF better the regression method if the collineality with the available data and their amount is not very large. Detection of which variables are more important basing on the forecast variable can also be achieved, obtaining a mean squared error smaller that the ones obtained through other methods, in special the one produced by the regression pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este proyecto de investigación es comparar dos técnicas matemáticas de aproximación polinómica, las aproximaciones según el criterio de mínimos cuadrados y las aproximaciones uniformes (“minimax”). Se describen tanto el mercado actual del cobre, con sus fluctuaciones a lo largo del tiempo, como los distintos modelos matemáticos y programas informáticos disponibles. Como herramienta informática se ha seleccionado Matlab®, cuya biblioteca matemática es muy amplia y de uso muy extendido y cuyo lenguaje de programación es suficientemente potente para desarrollar los programas que se necesiten. Se han obtenido diferentes polinomios de aproximación sobre una muestra (serie histórica) que recoge la variación del precio del cobre en los últimos años. Se ha analizado la serie histórica completa y dos tramos significativos de ella. Los resultados obtenidos incluyen valores de interés para otros proyectos. Abstract The aim of this research project is to compare two mathematical models for estimating polynomial approximation, the approximations according to the criterion of least squares approximations uniform (“Minimax”). Describes both the copper current market, fluctuating over time as different computer programs and mathematical models available. As a modeling tool is selected main Matlab® which math library is the largest and most widely used programming language and which is powerful enough to allow you to develop programs that are needed. We have obtained different approximating polynomials, applying mathematical methods chosen, a sample (historical series) which indicates the fluctuation in copper prices in last years. We analyzed the complete historical series and two significant sections of it. The results include values that we consider relevant to other projects

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La finalidad última do codificación y decodificación es conseguir que el mensaje reconstituido sea idéntico al original. Sin la teoría de códigos los mensajes binarios se caracterizan por vectores o también por polinomios con coeficientes pertenecientes al cuerpo dé Galois GF [0,l]. Sobre los conceptos de código, código lineal, código cíclico,generación polinómica de códigos, distancia, síndrome, relaciones con los elementos de un cuerpo finito, detección y corrección, etc., el mejor autor de referencia sigue siendo Peterson

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uno de los problemas primordiales en el cálculo por elementos finitos ha sido la obtención del mallado óptimo tal que se minimice el error obtenido, pudiendo distinguirse los siguientes procedimientos: - Aumento del número de nudos de la malla, fundamentalmente en las zonas del modelo donde aparece un error mayor. - Incrementando el grado de los polinomios de interpolación en los elementos donde el modelo presenta un error mayor. - Una combinación entre el primer y el segundo procedimiento. Según los trabajos realizados en la tesis doctoral de D. Rubén Martínez Marín1, se llega a la conclusión de que, tras medir el error del mallado por dos procedimientos distintos; los nudos de la malla óptima se sitúan a lo largo de las líneas isostáticas. Lo destacable de este resultado es que se obtiene sin variar el número de nudos iniciales, y sin incrementar el grado de los polinomios de interpolación; es decir, únicamente buscando la posición óptima de los nudos. Así, en el presente documento se plantea la realización de dos cálculos por elementos finitos; uno con un mallado convencional formado por elementos rectangulares, y otro con un mallado isostático, y la comparación de su error. Los dos mallados tendrán un número similar de nudos. Como modelo se utiliza una viga en ménsula de 6 m de longitud y 2 m de canto con una carga puntual vertical en su extremo. Todos los algoritmos utilizados se encuentran programados en MATLAB. El presente documento se estructura en las siguientes partes: - Capítulo 1.- Descripción de los trabajos. Donde se realiza un resumen de los trabajos realizados en la creación del presente documento. - Capítulo 2.- Trabajos previos. En el que se resumen los trabajos realizados por otros autores antecedentes del presente documento. - Capítulo 3.- Fundamentos teóricos. Donde se explican las bases teóricas que se van a aplicar en la creación del algoritmo y en su análisis. - Capítulo 4.- Descripción del algoritmo implementado en este trabajo. En este capítulo se analiza la estructura del algoritmo empleado. Incluye diagramas de proceso del programa base y de las principales subrutinas. - Capítulo 5.- Resultados y discusión. Donde se realiza la comparación del error del mallado convencional y del mallado isostático; por un lado comparando las flechas obtenidas en el extremo de la viga en voladizo con el valor exacto de la flecha, y por otro lado utilizando el Error Cuadrático Medio de las tensiones medias. Se termina con un análisis crítico de los resultados. - Capítulo 6.- Conclusiones y futuras líneas de investigación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es una aplicación del método de los elementos finitos (M.E.F) al cálculo de losas delgadas isotrópicas. Es pues un desarrollo de la función solución en suma de funciones a trozos. Dentro del M.E.F se utilizan como funciones interpolantes polinomios (integración numérica sencilla). La continuidad conseguida es C elevado a 1 (para el caso planteado representa convergencia monotónica ). Son elementos simples (de fácil extensión a láminas) y que forman una familia jerárquica (distintos grados de aproximación sin cambiar la malla). El primer elemento de la familia es el clough- felippa. Al final se dan resultados comparativos de algunas placas con otro tipo de elementos y la solución exacta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se introducen, en el contexto del Método de Elementos Finitos, dos alternativas posibles en relación con el concepto de acción repartida equivalente. La primera consiste en emplear pocos elementos, elevando el orden de dicha acción, mientras que la segunda se basa en emplear un mayor número de elementos dejando la acción en el orden más bajo posible. Se ilustran ambas situaciones mediante aplicaciones a los modelos de vigas de Timoshenko y Bernoulli-Euler, empleando estas acciones con diferentes órdenes, las cuales aproximan a la acción original, mediante polinomios ortogonales de Legendre en cada elemento. Como conclusión destacable, se indica que cuando se considera el menor número posible de elementos, es decir uno, para los casos de carga poco regular, ha bastado con utilizar acciones repartidas equivalentes de orden ligeramente superior al mínimo (orden cuatro), para obtener una excelente aproximación en los desplazamientos, giros y esfuerzos en el interior de los elementos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta tesis se aborda el problema de la externalización segura de servicios de datos y computación. El escenario de interés es aquel en el que el usuario posee datos y quiere subcontratar un servidor en la nube (“Cloud”). Además, el usuario puede querer también delegar el cálculo de un subconjunto de sus datos al servidor. Se presentan dos aspectos de seguridad relacionados con este escenario, en concreto, la integridad y la privacidad y se analizan las posibles soluciones a dichas cuestiones, aprovechando herramientas criptográficas avanzadas, como el Autentificador de Mensajes Homomórfico (“Homomorphic Message Authenticators”) y el Cifrado Totalmente Homomórfico (“Fully Homomorphic Encryption”). La contribución de este trabajo es tanto teórica como práctica. Desde el punto de vista de la contribución teórica, se define un nuevo esquema de externalización (en lo siguiente, denominado con su término inglés Outsourcing), usando como punto de partida los artículos de [3] y [12], con el objetivo de realizar un modelo muy genérico y flexible que podría emplearse para representar varios esquemas de ”outsourcing” seguro. Dicho modelo puede utilizarse para representar esquemas de “outsourcing” seguro proporcionando únicamente integridad, únicamente privacidad o, curiosamente, integridad con privacidad. Utilizando este nuevo modelo también se redefine un esquema altamente eficiente, construido en [12] y que se ha denominado Outsourcinglin. Este esquema permite calcular polinomios multivariados de grado 1 sobre el anillo Z2k . Desde el punto de vista de la contribución práctica, se ha construido una infraestructura marco (“Framework”) para aplicar el esquema de “outsourcing”. Seguidamente, se ha testado dicho “Framework” con varias implementaciones, en concreto la implementación del criptosistema Joye-Libert ([18]) y la implementación del esquema propio Outsourcinglin. En el contexto de este trabajo práctico, la tesis también ha dado lugar a algunas contribuciones innovadoras: el diseño y la implementación de un nuevo algoritmo de descifrado para el esquema de cifrado Joye-Libert, en colaboración con Darío Fiore. Presenta un mejor comportamiento frente a los algoritmos propuestos por los autores de [18];la implementación de la función eficiente pseudo-aleatoria de forma amortizada cerrada (“amortized-closed-form efficient pseudorandom function”) de [12]. Esta función no se había implementado con anterioridad y no supone un problema trivial, por lo que este trabajo puede llegar a ser útil en otros contextos. Finalmente se han usado las implementaciones durante varias pruebas para medir tiempos de ejecución de los principales algoritmos.---ABSTRACT---In this thesis we tackle the problem of secure outsourcing of data and computation. The scenario we are interested in is that in which a user owns some data and wants to “outsource” it to a Cloud server. Furthermore, the user may want also to delegate the computation over a subset of its data to the server. We present the security issues related to this scenario, namely integrity and privacy and we analyse some possible solutions to these two issues, exploiting advanced cryptographic tools, such as Homomorphic Message Authenticators and Fully Homomorphic Encryption. Our contribution is both theoretical and practical. Considering our theoretical contribution, using as starting points the articles of [3] and [12], we introduce a new cryptographic primitive, called Outsourcing with the aim of realizing a very generic and flexible model that might be employed to represent several secure outsourcing schemes. Such model can be used to represent secure outsourcing schemes that provide only integrity, only privacy or, interestingly, integrity with privacy. Using our new model we also re-define an highly efficient scheme constructed in [12], that we called Outsourcinglin and that is a scheme for computing multi-variate polynomials of degree 1 over the ring Z2k. Considering our practical contribution, we build a Framework to implement the Outsourcing scheme. Then, we test such Framework to realize several implementations, specifically the implementation of the Joye-Libert cryptosystem ([18]) and the implementation of our Outsourcinglin scheme. In the context of this practical work, the thesis also led to some novel contributions: the design and the implementation, in collaboration with Dario Fiore, of a new decryption algorithm for the Joye-Libert encryption scheme, that performs better than the algorithms proposed by the authors in [18]; the implementation of the amortized-closed-form efficient pseudorandom function of [12]. There was no prior implementation of this function and it represented a non trivial work, which can become useful in other contexts. Finally we test the implementations to execute several experiments for measuring the timing performances of the main algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las comunicaciones por satélite tienen cada vez mayores necesidades de espectro, con el objetivo de ofrecer servicios de banda ancha, tanto de comunicación de datos como de radiodifusión. En esta línea, se está incrementando de manera importante el uso de frecuencias en la banda Ka (20 y 30 GHz), que se verá complementada en el futuro por la banda Q/V (40 y 50 GHz) y por frecuencias en la banda W (por encima de 60 GHz). En estas frecuencias, microondas y ondas milimétricas, la troposfera produce importantes efectos de propagación. El más estudiado es el efecto de la lluvia, que produce desvanecimientos muy profundos. Sin embargo, la lluvia está presente en porcentajes de tiempo pequeños, típicamente inferiores al 5% en los climas templados. El resto del tiempo, más del 95% por ejemplo en los climas mencionados, los gases y las nubes pueden causar niveles importantes de atenuación en estas frecuencias. La Tesis aporta un nuevo modelo (Modelo Lucas-Riera), consistente en un conjunto de polinomios de aproximación para realizar, en ausencia de lluvia, la estimación de determinados parámetros de propagación, partiendo de otros datos que se suponen disponibles. El modelo está basado en datos obtenidos de radiosondeos meteorológicos y modelos físicos de atenuación por gases y nubes, que son los fenómenos más relevantes en ausencia de lluvia, y tiene en cuenta las características climatológicas del emplazamiento de interés, utilizando la clasificación climática de Köppen. Este modelo es aplicable en las bandas de frecuencias entre 12 y 100 GHz (exceptuando 60 GHz), donde se aproximarían los mencionados parámetros de propagación en una frecuencia a partir de los obtenidos en otra, en el caso de la atenuación y la temperatura de brillo, o bien se estimaría la temperatura media de radiación a una determinada frecuencia partiendo de la temperatura de superficie. Con este modelo se puede obtener una aproximación razonable si se conoce la Zona Climática de Köppen de la localización terrestre para la que queremos calcular las aproximaciones y en caso de que ésta se desconozca se aporta una Zona Global, que representa toda la superficie terrestre. La aproximación que se propone para realizar el escalado en frecuencia puede ser útil en los enlaces de comunicaciones por satélite, en los que a menudo se dispone de información en relación a los parámetros de propagación a una determinada frecuencia, por ejemplo en el enlace descendente, y sería de utilidad conocer esos mismos parámetros en el enlace ascendente de cara a poder mitigar los efectos que tiene la atmósfera sobre la señal emitida (atenuación, desvanecimiento, etc). En el caso de la temperatura media de radiación, la aproximación que se propone podría ser útil de cara a la realización de medidas de radiometría, diseño de equipamiento de instrumentación o comunicaciones por satélite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Fotogrametría, como ciencia y técnica de obtención de información tridimensional del espacio objeto a partir de imágenes bidimensionales, requiere de medidas de precisión y en ese contexto, la calibración geométrica de cámaras ocupa un lugar importante. El conocimiento de la geometría interna de la cámara es fundamental para lograr mayor precisión en las medidas realizadas. En Fotogrametría Aérea se utilizan cámaras métricas (fabricadas exclusivamente para aplicaciones cartográficas), que incluyen objetivos fotográficos con sistemas de lentes complejos y de alta calidad. Pero en Fotogrametría de Objeto Cercano se está trabajando cada vez con más asiduidad con cámaras no métricas, con ópticas de peor calidad que exigen una calibración geométrica antes o después de cada trabajo. El proceso de calibración encierra tres conceptos fundamentales: modelo de cámara, modelo de distorsión y método de calibración. El modelo de cámara es un modelo matemático que aproxima la transformación proyectiva original a la realidad física de las lentes. Ese modelo matemático incluye una serie de parámetros entre los que se encuentran los correspondientes al modelo de distorsión, que se encarga de corregir los errores sistemáticos de la imagen. Finalmente, el método de calibración propone el método de estimación de los parámetros del modelo matemático y la técnica de optimización a emplear. En esta Tesis se propone la utilización de un patrón de calibración bidimensional que se desplaza en la dirección del eje óptico de la cámara, ofreciendo así tridimensionalidad a la escena fotografiada. El patrón incluye un número elevado de marcas, lo que permite realizar ensayos con distintas configuraciones geométricas. Tomando el modelo de proyección perspectiva (o pinhole) como modelo de cámara, se realizan ensayos con tres modelos de distorsión diferentes, el clásico de distorsión radial y tangencial propuesto por D.C. Brown, una aproximación por polinomios de Legendre y una interpolación bicúbica. De la combinación de diferentes configuraciones geométricas y del modelo de distorsión más adecuado, se llega al establecimiento de una metodología de calibración óptima. Para ayudar a la elección se realiza un estudio de las precisiones obtenidas en los distintos ensayos y un control estereoscópico de un panel test construido al efecto. ABSTRACT Photogrammetry, as science and technique for obtaining three-dimensional information of the space object from two-dimensional images, requires measurements of precision and in that context, the geometric camera calibration occupies an important place. The knowledge of the internal geometry of the camera is fundamental to achieve greater precision in measurements made. Metric cameras (manufactured exclusively for cartographic applications), including photographic lenses with complex lenses and high quality systems are used in Aerial Photogrammetry. But in Close Range Photogrammetry is working increasingly more frequently with non-metric cameras, worst quality optical components which require a geometric calibration before or after each job. The calibration process contains three fundamental concepts: camera model, distortion model and method of calibration. The camera model is a mathematical model that approximates the original projective transformation to the physical reality of the lenses. The mathematical model includes a series of parameters which include the correspondents to the model of distortion, which is in charge of correcting the systematic errors of the image. Finally, the calibration method proposes the method of estimation of the parameters of the mathematical modeling and optimization technique to employ. This Thesis is proposing the use of a pattern of two dimensional calibration that moves in the direction of the optical axis of the camera, thus offering three-dimensionality to the photographed scene. The pattern includes a large number of marks, which allows testing with different geometric configurations. Taking the projection model perspective (or pinhole) as a model of camera, tests are performed with three different models of distortion, the classical of distortion radial and tangential proposed by D.C. Brown, an approximation by Legendre polynomials and bicubic interpolation. From the combination of different geometric configurations and the most suitable distortion model, brings the establishment of a methodology for optimal calibration. To help the election, a study of the information obtained in the various tests and a purpose built test panel stereoscopic control is performed.