10 resultados para Fair value measurement

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of power optimization tools depends on information on design power provided by the power estimation models. Power models targeting different power groups can enable fast identification of the most power consuming parts of design and their properties. The accuracy of these estimation models is highly dependent on the accuracy of the method used for their characterization. The highest precision is achieved by using physical onboard measurements. In this paper, we present a measurement methodology that is primarily aimed at calibrating and validating high-level dynamic power estimation models. The measurements have been carefully designed to enable the separation of the interconnect power from the logic power and the power of the clock circuitry, so that each of these power groups can be used for the corresponding model validation. The standard measurement uncertainty is lower than 2% of the measured value even with a very small number of repeated measurements. Additionally, the accuracy of a commercial low-level power estimation tool has been also assessed for comparison purposes. The results indicate that the tool is not suitable for power estimation of data path-oriented designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most significant aspects of a building’s acoustic behavior is the airborne sound insulation of the room façades, since this determines the protection of its inhabitants against environmental noise. For this reason, authorities in most countries have established in their acoustic regulations for buildings the minimum value of sound insulation that must be respected for façades. In order to verify compliance with legal requirements it is usual to perform acoustic measurements in the finished buildings and then compare the measurement results with the established limits. Since there is always a certain measurement uncertainty, this uncertainty must be calculated and taken into account in order to ensure compliance with specifications. The most commonly used method for measuring sound insulation on façades is the so-called Global Loudspeaker Method, specified in ISO 140-5:1998. This method uses a loudspeaker placed outside the building as a sound source. The loudspeaker directivity has a significant influence on the measurement results, and these results may change noticeably by choosing different loudspeakers, even though they all fulfill the directivity requirements of ISO 140-5. This work analyzes the influence of the loudspeaker directivity on the results of façade sound insulation measurement, and determines its contribution to measurement uncertainty. The theoretical analysis is experimentally validated by means of an intermediate precision test according to ISO 5725-3:1994, which compares the values of sound insulation obtained for a façade using various loudspeakers with different directivities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The verification of compliance with a design specification in manufacturing requires the use of metrological instruments to check if the magnitude associated with the design specification is or not according with tolerance range. Such instrumentation and their use during the measurement process, has associated an uncertainty of measurement whose value must be related to the value of tolerance tested. Most papers dealing jointly tolerance and measurement uncertainties are mainly focused on the establishment of a relationship uncertainty-tolerance without paying much attention to the impact from the standpoint of process cost. This paper analyzes the cost-measurement uncertainty, considering uncertainty as a productive factor in the process outcome. This is done starting from a cost-tolerance model associated with the process. By means of this model the existence of a measurement uncertainty is calculated in quantitative terms of cost and its impact on the process is analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most significant aspects of a building?s acoustic behavior is the airborne sound insulation of the room façades, since this determines the protection of its inhabitants against environmental noise. For this reason, authorities in most countries have established in their acoustic regulations for buildings the minimum value of sound insulation that must be respected for façades. In order to verify compliance with legal requirements it is usual to perform acoustic measurements in the finished buildings and then compare the measurement results with the established limits. Since there is always a certain measurement uncertainty, this uncertainty must be calculated and taken into account in order to ensure compliance with specifications. The most commonly used method for measuring sound insulation on façades is the so-called Global Loudspeaker Method, specified in ISO 140-5:1998. This method uses a loudspeaker placed outside the building as a sound source. The loudspeaker directivity has a significant influence on the measurement results, and these results may change noticeably by choosing different loudspeakers, even though they all fulfill the directivity requirements of ISO 140-5. This work analyzes the influence of the loudspeaker directivity on the results of façade sound insulation measurement, and determines its contribution to measurement uncertainty. The theoretical analysis is experimentally validated by means of an intermediate precision test according to ISO 5725-3:1994, which compares the values of sound insulation obtained for a façade using various loudspeakers with different directivities. Keywords: Uncertainty, Façade, Insulation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computing the modal parameters of structural systems often requires processing data from multiple non-simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors, which are fixed for all measurements, while the other sensors change their position from one setup to the next. One possibility is to process the setups separately resulting in different modal parameter estimates for each setup. Then, the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global mode shapes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a new state space model that processes all setups at once. The result is that the global mode shapes are obtained automatically, and only a value for the natural frequency and damping ratio of each mode is estimated. We also investigate the estimation of this model using maximum likelihood and the Expectation Maximization algorithm, and apply this technique to simulated and measured data corresponding to different structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computing the modal parameters of large structures in Operational Modal Analysis often requires to process data from multiple non simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors that are fixed for all the measurements, while the other sensors are moved from one setup to the next. One possibility is to process the setups separately what result in different modal parameter estimates for each setup. Then the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global modes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a state space model that can be used to process all setups at once so the global mode shapes are obtained automatically and subsequently only a value for the natural frequency and damping ratio of each mode is computed. We also present how this model can be estimated using maximum likelihood and the Expectation Maximization algorithm. We apply this technique to real data measured at a footbridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasound wave velocity was measured in 30 pieces of Spanish Scots pine (Pinus sylvestris L.), 90 x 140 mm in cross-section and 4 m long. Five different sensor placement arrangements were used: end to end (V0), face to opposite face, edge to opposite edge, face to same face and edge to same edge. The pieces were successively shortened to 3, 2 and 1 m, in order to obtain these velocities and their ratios to reference value V0 for different lengths and angles with respect to the piece axis for the crossed measurements. The velocity obtained in crossed measurements is lower than V0. A correction coefficient for crossed velocities is proposed, depending on the angle, to adjust them to the V0 benchmark. The velocities measured on a surface, are also lower than V0, and their ratio with respect to V0 is close to 0.97 for distances equal to or greater than 18 times the depth of the beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we have realized plasma diagnosis produced by Laser (LPP), by means of emission spectroscopy in a Laser Shock Processing (LSP). The LSP has been proposed as an alternative technology, competitive with classical surface treatments. The ionic species present in the plasma together with electron density and its temperature provide significant indicators of the degree of surface effect of the treated material. In order to analyze these indicators, we have realized spectroscopic studies of optical emission in the laser-generated plasmas in different situations. We have worked focusing on an aluminum sample (Al2024) in air and/or in LSP conditions (water flow) a Q-switched laser of Nd:YAG (λ = 1.06 μm, 10 ns of pulse duration, running at 10 Hz repetition rate). The pulse energy was set at 2,5 J per pulse. The electron density has been measured using, in every case, the Stark broadening of H Balmer α line (656.27 nm). In the case of the air, this measure has been contrasted with the value obtained with the line of 281.62 nm of Al II. Special attention has been paid to the self-absorption of the spectral lines used. The measures were realized with different delay times after the pulse of the laser (1–8 μs) and with a time window of 1 μs. In LSP the electron density obtained was between 1017 cm−3 for the shortest delays (4–6 μs), and 1016 cm−3 for the greatest delays (7,8 μs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a model for the measuring process of sonic anemometers (ultrasound pulse based) is presented. The differential equations that describe the travel of ultrasound pulses are solved in the general case of non-steady, non-uniform atmospheric flow field. The concepts of instantaneous line-average and travelling pulse-referenced average are established and employed to explain and calculate the differences between the measured turbulent speed (travelling pulse-referenced average) and the line-averaged one. The limit k1l=1 established by Kaimal in 1968, as the maximum value which permits the neglect of the influence of the sonic measuring process on the measurement of turbulent components is reviewed here. Three particular measurement cases are analysed: A non-steady, uniform flow speed field, a steady, non-uniform flow speed field and finally an atmospheric flow speed field. In the first case, for a harmonic time-dependent flow field, Mach number, M (flow speed to sound speed ratio) and time delay between pulses have revealed themselves to be important parameters in the behaviour of sonic anemometers, within the range of operation. The second case demonstrates how the spatial non-uniformity of the flow speed field leads to an influence of the finite transit time of the pulses (M≠0) even in the absence of non-steady behaviour of the wind speed. In the last case, a model of the influence of the sonic anemometer processes on the measurement of wind speed spectral characteristics is presented. The new solution is compared to the line-averaging models existing in the literature. Mach number and time delay significantly distort the measurement in the normal operational range. Classical line averaging solutions are recovered when Mach number and time delay between pulses go to zero in the new proposed model. The results obtained from the mathematical model have been applied to the calculation of errors in different configurations of practical interest, such as an anemometer located on a meteorological mast and the transfer function of a sensor in an atmospheric wind. The expressions obtained can be also applied to determine the quality requirements of the flow in a wind tunnel used for ultrasonic anemometer calibrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta Tesis se centra en el desarrollo de un método para la reconstrucción de bases de datos experimentales incompletas de más de dos dimensiones. Como idea general, consiste en la aplicación iterativa de la descomposición en valores singulares de alto orden sobre la base de datos incompleta. Este nuevo método se inspira en el que ha servido de base para la reconstrucción de huecos en bases de datos bidimensionales inventado por Everson y Sirovich (1995) que a su vez, ha sido mejorado por Beckers y Rixen (2003) y simultáneamente por Venturi y Karniadakis (2004). Además, se ha previsto la adaptación de este nuevo método para tratar el posible ruido característico de bases de datos experimentales y a su vez, bases de datos estructuradas cuya información no forma un hiperrectángulo perfecto. Se usará una base de datos tridimensional de muestra como modelo, obtenida a través de una función transcendental, para calibrar e ilustrar el método. A continuación se detalla un exhaustivo estudio del funcionamiento del método y sus variantes para distintas bases de datos aerodinámicas. En concreto, se usarán tres bases de datos tridimensionales que contienen la distribución de presiones sobre un ala. Una se ha generado a través de un método semi-analítico con la intención de estudiar distintos tipos de discretizaciones espaciales. El resto resultan de dos modelos numéricos calculados en C F D . Por último, el método se aplica a una base de datos experimental de más de tres dimensiones que contiene la medida de fuerzas de una configuración ala de Prandtl obtenida de una campaña de ensayos en túnel de viento, donde se estudiaba un amplio espacio de parámetros geométricos de la configuración que como resultado ha generado una base de datos donde la información está dispersa. ABSTRACT A method based on an iterative application of high order singular value decomposition is derived for the reconstruction of missing data in multidimensional databases. The method is inspired by a seminal gappy reconstruction method for two-dimensional databases invented by Everson and Sirovich (1995) and improved by Beckers and Rixen (2003) and Venturi and Karniadakis (2004). In addition, the method is adapted to treat both noisy and structured-but-nonrectangular databases. The method is calibrated and illustrated using a three-dimensional toy model database that is obtained by discretizing a transcendental function. The performance of the method is tested on three aerodynamic databases for the flow past a wing, one obtained by a semi-analytical method, and two resulting from computational fluid dynamics. The method is finally applied to an experimental database consisting in a non-exhaustive parameter space measurement of forces for a box-wing configuration.