27 resultados para Facial Object Based Method
em Universidad Politécnica de Madrid
Resumo:
The scientific method is a methodological approach to the process of inquiry { in which empirically grounded theory of nature is constructed and verified [14]. It is a hard, exhaustive and dedicated multi-stage procedure that a researcher must perform to achieve valuable knowledge. Trying to help researchers during this process, a recommender system, intended as a researcher assistant, is designed to provide them useful tools and information for each stage of the procedure. A new similarity measure between research objects and a representational model, based on domain spaces, to handle them in dif ferent levels are created as well as a system to build them from OAI-PMH (and RSS) resources. It tries to represents a sound balance between scientific insight into individual scientific creative processes and technical implementation using innovative technologies in information extraction, document summarization and semantic analysis at a large scale.
Resumo:
This paper proposes a new methodology for object based 2-D data fu- sion, with a multiscale character. This methodology is intended to be use in agriculture, specifically in the characterization of the water status of different crops, so as to have an appropriate water management at a farm-holding scale. As a first approach to its evaluation, vegetation cover vigor data has been integrated with texture data. For this purpose, NDVI maps have been calculated using a multispectral image and Lacunarity maps from the panchromatic image. Preliminary results show this methodology is viable in the integration and management of large volumes of data, which characterize the behavior of agricultural covers at farm-holding scale.
Resumo:
Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.
Resumo:
In this article we describe a method for automatically generating text summaries of data corresponding to traces of spatial movement in geographical areas. The method can help humans to understand large data streams, such as the amounts of GPS data recorded by a variety of sensors in mobile phones, cars, etc. We describe the knowledge representations we designed for our method and the main components of our method for generating the summaries: a discourse planner, an abstraction module and a text generator. We also present evaluation results that show the ability of our method to generate certain types of geospatial and temporal descriptions.
Resumo:
The correct assignment of high molecular weight glutenin subunit variants is a key task in wheat breeding. However, the traditional analysis by protein electrophoresis is sometimes difficult and not very precise. This work describes a novel DNA marker for the accurate discrimination between the Glu-B1 locus subunits Bx7 and Bx7*. The analysis of one hundred and forty two bread wheat cultivars from different countries has highlighted a great number of misclassifications in the literature that could lead to wrong conclusions in studies of the relationship between glutenin composition and wheat quality.
Resumo:
Validación de la cartografía generada del terreno a partir de una nuevo sistema de validación propuesto
Resumo:
Clasificación de una imagen de alta resolución "Quickbird" con la técnica de análisis de imágenes en base a objetos.
Resumo:
Remote sensing information from spaceborne and airborne platforms continues to provide valuable data for different environmental monitoring applications. In this sense, high spatial resolution im-agery is an important source of information for land cover mapping. For the processing of high spa-tial resolution images, the object-based methodology is one of the most commonly used strategies. However, conventional pixel-based methods, which only use spectral information for land cover classification, are inadequate for classifying this type of images. This research presents a method-ology to characterise Mediterranean land covers in high resolution aerial images by means of an object-oriented approach. It uses a self-calibrating multi-band region growing approach optimised by pre-processing the image with a bilateral filtering. The obtained results show promise in terms of both segmentation quality and computational efficiency.
Resumo:
In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.
Resumo:
In recent years, challenged by the climate scenarios put forward by the IPCC and its potential impact on plant distribution, numerous predictive techniques -including the so called habitat suitability models (HSM)- have been developed. Yet, as the output of the different methods produces different distribution areas, developing validation tools are strong needs to reduce uncertainties. Focused in the Iberian Peninsula, we propose a palaeo-based method to increase the robustness of the HSM, by developing an ecological approach to understand the mismatches between the palaeoecological information and the projections of the HSMs. Here, we present the result of (1) investigating causal relationships between environmental variables and presence of Pinus sylvestris L. and P. nigra Arn. available from the 3rd Spanish Forest Inventory, (2) developing present and past presence-predictions through the MaxEnt model for 6 and 21 kyr BP, and (3) assessing these models through comparisons with biomized palaeoecological data available from the European Pollen Database for the Iberian Peninsula.
Resumo:
Nonparametric belief propagation (NBP) is a well-known particle-based method for distributed inference in wireless networks. NBP has a large number of applications, including cooperative localization. However, in loopy networks NBP suffers from similar problems as standard BP, such as over-confident beliefs and possible nonconvergence. Tree-reweighted NBP (TRW-NBP) can mitigate these problems, but does not easily lead to a distributed implementation due to the non-local nature of the required so-called edge appearance probabilities. In this paper, we propose a variation of TRWNBP, suitable for cooperative localization in wireless networks. Our algorithm uses a fixed edge appearance probability for every edge, and can outperform standard NBP in dense wireless networks.
Resumo:
This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.
Resumo:
In this paper we focus on the selection of safeguards in a fuzzy risk analysis and management methodology for information systems (IS). Assets are connected by dependency relationships, and a failure of one asset may affect other assets. After computing impact and risk indicators associated with previously identified threats, we identify and apply safeguards to reduce risks in the IS by minimizing the transmission probabilities of failures throughout the asset network. However, as safeguards have associated costs, the aim is to select the safeguards that minimize costs while keeping the risk within acceptable levels. To do this, we propose a dynamic programming-based method that incorporates simulated annealing to tackle optimizations problems.
Resumo:
Very high resolution remotely sensed images are an important tool for monitoring fragmented agricultural landscapes, which allows farmers and policy makers to make better decisions regarding management practices. An object-based methodology is proposed for automatic generation of thematic maps of the available classes in the scene, which combines edge-based and superpixel processing for small agricultural parcels. The methodology employs superpixels instead of pixels as minimal processing units, and provides a link between them and meaningful objects (obtained by the edge-based method) in order to facilitate the analysis of parcels. Performance analysis on a scene dominated by agricultural small parcels indicates that the combination of both superpixel and edge-based methods achieves a classification accuracy slightly better than when those methods are performed separately and comparable to the accuracy of traditional object-based analysis, with automatic approach.
Resumo:
We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.