2 resultados para Exponential distribution

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El estudio de la fiabilidad de componentes y sistemas tiene gran importancia en diversos campos de la ingenieria, y muy concretamente en el de la informatica. Al analizar la duracion de los elementos de la muestra hay que tener en cuenta los elementos que no fallan en el tiempo que dure el experimento, o bien los que fallen por causas distintas a la que es objeto de estudio. Por ello surgen nuevos tipos de muestreo que contemplan estos casos. El mas general de ellos, el muestreo censurado, es el que consideramos en nuestro trabajo. En este muestreo tanto el tiempo hasta que falla el componente como el tiempo de censura son variables aleatorias. Con la hipotesis de que ambos tiempos se distribuyen exponencialmente, el profesor Hurt estudio el comportamiento asintotico del estimador de maxima verosimilitud de la funcion de fiabilidad. En principio parece interesante utilizar metodos Bayesianos en el estudio de la fiabilidad porque incorporan al analisis la informacion a priori de la que se dispone normalmente en problemas reales. Por ello hemos considerado dos estimadores Bayesianos de la fiabilidad de una distribucion exponencial que son la media y la moda de la distribucion a posteriori. Hemos calculado la expansion asint6tica de la media, varianza y error cuadratico medio de ambos estimadores cuando la distribuci6n de censura es exponencial. Hemos obtenido tambien la distribucion asintotica de los estimadores para el caso m3s general de que la distribucion de censura sea de Weibull. Dos tipos de intervalos de confianza para muestras grandes se han propuesto para cada estimador. Los resultados se han comparado con los del estimador de maxima verosimilitud, y con los de dos estimadores no parametricos: limite producto y Bayesiano, resultando un comportamiento superior por parte de uno de nuestros estimadores. Finalmente nemos comprobado mediante simulacion que nuestros estimadores son robustos frente a la supuesta distribuci6n de censura, y que uno de los intervalos de confianza propuestos es valido con muestras pequenas. Este estudio ha servido tambien para confirmar el mejor comportamiento de uno de nuestros estimadores. SETTING OUT AND SUMMARY OF THE THESIS When we study the lifetime of components it's necessary to take into account the elements that don't fail during the experiment, or those that fail by reasons which are desirable to exclude from consideration. The model of random censorship is very usefull for analysing these data. In this model the time to failure and the time censor are random variables. We obtain two Bayes estimators of the reliability function of an exponential distribution based on randomly censored data. We have calculated the asymptotic expansion of the mean, variance and mean square error of both estimators, when the censor's distribution is exponential. We have obtained also the asymptotic distribution of the estimators for the more general case of censor's Weibull distribution. Two large-sample confidence bands have been proposed for each estimator. The results have been compared with those of the maximum likelihood estimator, and with those of two non parametric estimators: Product-limit and Bayesian. One of our estimators has the best behaviour. Finally we have shown by simulation, that our estimators are robust against the assumed censor's distribution, and that one of our intervals does well in small sample situation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the dynamical states of a small-world network of recurrently coupled excitable neurons, through both numerical and analytical methods. The dynamics of this system depend mostly on both the number of long-range connections or ?shortcuts?, and the delay associated with neuronal interactions. We find that persistent activity emerges at low density of shortcuts, and that the system undergoes a transition to failure as their density reaches a critical value. The state of persistent activity below this transition consists of multiple stable periodic attractors, whose number increases at least as fast as the number of neurons in the network. At large shortcut density and for long enough delays the network dynamics exhibit exceedingly long chaotic transients, whose failure times follow a stretched exponential distribution. We show that this functional form arises for the ensemble-averaged activity if the failure time for each individual network realization is exponen- tially distributed