25 resultados para Error impact analysis
em Universidad Politécnica de Madrid
Resumo:
Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.
Resumo:
Software architecture is a key factor to scale up Agile Software Development ASD in large softwareintensive systems. Currently, software architectures are more often approached through mechanisms that enable to incrementally design and evolve software architectures aka. agile architecting. Agile architecting should be a light-weight decision-making process, which could be achieved by providing knowledge to assist agile architects in reasoning about changes. This paper presents the novel solution of using change-impact knowledge as the main driver for agile architecting. The solution consists of a Change Impact Analysis technique and a set of models to assist agile architects in the change -decision-making- process by retrieving the change-impact architectural knowledge resulting from adding or changing features iteration after iteration. To validate our approach, we have put our solution into practice by running a project of a metering management system in electric power networks in an i-smart software factory.
Resumo:
This paper presents the security evaluation, energy consumption optimization, and spectrum scarcity analysis of artificial noise techniques to increase physical-layer security in Cognitive Wireless Sensor Networks (CWSNs). These techniques introduce noise into the spectrum in order to hide real information. Nevertheless, they directly affect two important parameters in Cognitive Wireless Sensor Networks (CWSNs), energy consumption and spectrum utilization. Both are affected because the number of packets transmitted by the network and the active period of the nodes increase. Security evaluation demonstrates that these techniques are effective against eavesdropper attacks, but also optimization allows for the implementation of these approaches in low-resource networks such as Cognitive Wireless Sensor Networks. In this work, the scenario is formally modeled and the optimization according to the simulation results and the impact analysis over the frequency spectrum are presented.
Resumo:
Software Product Line Engineering (SPLE) has proved to have significant advantages in family-based software development, but also implies the up¬front design of a product-line architecture (PLA) from which individual product applications can be engineered. The big upfront design associated with PLAs is in conflict with the current need of "being open to change". However, the turbulence of the current business climate makes change inevitable in order to stay competitive, and requires PLAs to be open to change even late in the development. The trend of "being open to change" is manifested in the Agile Software Development (ASD) paradigm, but it is spreading to the domain of SPLE. To reduce the big upfront design of PLAs as currently practiced in SPLE, new paradigms are being created, one being Agile Product Line Engineering (APLE). APLE aims to make the development of product-lines more flexible and adaptable to changes as promoted in ASD. To put APLE into practice it is necessary to make mechanisms available to assist and guide the agile construction and evolution of PLAs while complying with the "be open to change" agile principle. This thesis defines a process for "the agile construction and evolution of product-line architectures", which we refer to as Agile Product-Line Archi-tecting (APLA). The APLA process provides agile architects with a set of models for describing, documenting and tracing PLAs, as well as an algorithm to analyze change impact. Both the models and the change impact analysis offer the following capabilities: Flexibility & adaptability at the time of defining software architectures, enabling change during the incremental and iterative design of PLAs (anticipated or planned changes) and their evolution (unanticipated or unforeseen changes). Assistance in checking architectural integrity through change impact analysis in terms of architectural concerns, such as dependencies on earlier design decisions, rationale, constraints, and risks, etc.Guidance in the change decision-making process through change im¬pact analysis in terms of architectural components and connections. Therefore, APLA provides the mechanisms required to construct and evolve PLAs that can easily be refined iteration after iteration during the APLE development process. These mechanisms are provided in a modeling frame¬work called FPLA. The contributions of this thesis have been validated through the conduction of a project regarding a metering management system in electrical power networks. This case study took place in an i-smart software factory and was in collaboration with the Technical University of Madrid and Indra Software Labs. La Ingeniería de Líneas de Producto Software (Software Product Line Engi¬neering, SPLE) ha demostrado tener ventajas significativas en el desarrollo de software basado en familias de productos. SPLE es un paradigma que se basa en la reutilización sistemática de un conjunto de características comunes que comparten los productos de un mismo dominio o familia, y la personalización masiva a través de una variabilidad bien definida que diferencia unos productos de otros. Este tipo de desarrollo requiere el diseño inicial de una arquitectura de línea de productos (Product-Line Architecture, PLA) a partir de la cual los productos individuales de la familia son diseñados e implementados. La inversión inicial que hay que realizar en el diseño de PLAs entra en conflicto con la necesidad actual de estar continuamente "abierto al cam¬bio", siendo este cambio cada vez más frecuente y radical en la industria software. Para ser competitivos es inevitable adaptarse al cambio, incluso en las últimas etapas del desarrollo de productos software. Esta tendencia se manifiesta de forma especial en el paradigma de Desarrollo Ágil de Software (Agile Software Development, ASD) y se está extendiendo también al ámbito de SPLE. Con el objetivo de reducir la inversión inicial en el diseño de PLAs en la manera en que se plantea en SPLE, en los último años han surgido nuevos enfoques como la Ingeniera de Líneas de Producto Software Ágiles (Agile Product Line Engineering, APLE). APLE propone el desarrollo de líneas de producto de forma más flexible y adaptable a los cambios, iterativa e incremental. Para ello, es necesario disponer de mecanismos que ayuden y guíen a los arquitectos de líneas de producto en el diseño y evolución ágil de PLAs, mientras se cumple con el principio ágil de estar abierto al cambio. Esta tesis define un proceso para la "construcción y evolución ágil de las arquitecturas de lineas de producto software". A este proceso se le ha denominado Agile Product-Line Architecting (APLA). El proceso APLA proporciona a los arquitectos software un conjunto de modelos para de¬scribir, documentar y trazar PLAs, así como un algoritmo para analizar vel impacto del cambio. Los modelos y el análisis del impacto del cambio ofrecen: Flexibilidad y adaptabilidad a la hora de definir las arquitecturas software, facilitando el cambio durante el diseño incremental e iterativo de PLAs (cambios esperados o previstos) y su evolución (cambios no previstos). Asistencia en la verificación de la integridad arquitectónica mediante el análisis de impacto de los cambios en términos de dependencias entre decisiones de diseño, justificación de las decisiones de diseño, limitaciones, riesgos, etc. Orientación en la toma de decisiones derivadas del cambio mediante el análisis de impacto de los cambios en términos de componentes y conexiones. De esta manera, APLA se presenta como una solución para la construcción y evolución de PLAs de forma que puedan ser fácilmente refinadas iteración tras iteración de un ciclo de vida de líneas de producto ágiles. Dicha solución se ha implementado en una herramienta llamada FPLA (Flexible Product-Line Architecture) y ha sido validada mediante su aplicación en un proyecto de desarrollo de un sistema de gestión de medición en redes de energía eléctrica. Dicho proyecto ha sido desarrollado en una fábrica de software global en colaboración con la Universidad Politécnica de Madrid e Indra Software Labs.
Resumo:
Urban areas benefit from significant improvements in accessibility when a new high speed rail (HSR) project is built. These improvements, which are due mainly to a rise in efficiency, produce locational advantagesand increase the attractiveness of these cities, thereby possibly enhancing their competitivenessand economic growth. However, there may be equity issues at stake, as the main accessibility benefits are primarily concentrated in urban areas with a HSR station, whereas other locations obtain only limited benefits. HSR extensions may contribute to an increase in spatial imbalance and lead to more polarized patterns of spatial development. Procedures for assessing the spatial impacts of HSR must therefore follow a twofold approach which addresses issues of both efficiency and equity. This analysis can be made by jointly assessing both the magnitude and distribution of the accessibility improvements deriving from a HSR project. This paper describes an assessment methodology for HSR projects which follows this twofold approach. The procedure uses spatial impact analysis techniques and is based on the computation of accessibility indicators, supported by a Geographical Information System (GIS). Efficiency impacts are assessed in terms of the improvements in accessibility resulting from the HSR project, with a focus on major urban areas; and spatial equity implications are derived from changes in the distribution of accessibility values among these urban agglomerations.
Resumo:
1. Introduction: setting and problem definition 2. The Adaptation Pathway –2.1 Stage 1: appraising risks and opportunities •Step 1: Impact analysis •Step 2: Policy analysis •Step 3: Socio-institutional analysis –2.2 Stage 2: appraising and choosing adaptation opt ions •Step 4: identifying and prioritizing adaptation o ptions 3. Conclusions
Resumo:
We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation.
Resumo:
The problem of parameterizing approximately algebraic curves and surfaces is an active research field, with many implications in practical applications. The problem can be treated locally or globally. We formally state the problem, in its global version for the case of algebraic curves (planar or spatial), and we report on some algorithms approaching it, as well as on the associated error distance analysis.
Resumo:
Sustainable transport planning requires an integrated approach involving strategic planning, impact analysis and multi-criteria evaluation. This study aims at relaxing the utility-based decision-making assumption by newly embedding anticipated-regret and combined utility-regret decision mechanisms in an integrated transport planning framework. The framework consists of a two-round Delphi survey, an integrated land-use and transport model for Madrid, and multi-criteria analysis. Results show that (i) regret-based ranking has similar mean but larger variance than utility-based ranking; (ii) the least-regret scenario forms a compromise between the desired and the expected scenarios; (iii) the least-regret scenario can lead to higher user benefits in the short-term and lower user benefits in the long-term; (iv) utility-based, regret-based and combined utility-regret-based multi-criteria analysis result in different rankings of policy packages; and (v) the combined utility-regret ranking is more informative compared with utility-based or regret-based ranking.
Resumo:
La teledetección o percepción remota (remote sensing) es la ciencia que abarca la obtención de información (espectral, espacial, temporal) sobre un objeto, área o fenómeno a través del análisis de datos adquiridos por un dispositivo que no está en contacto con el elemento estudiado. Los datos obtenidos a partir de la teledetección para la observación de la superficie terrestre comúnmente son imágenes, que se caracterizan por contar con un sinnúmero de aplicaciones que están en continua evolución, por lo cual para solventar los constantes requerimientos de nuevas aplicaciones a menudo se proponen nuevos algoritmos que mejoran o facilitan algún proceso en particular. Para el desarrollo de dichos algoritmos, es preciso hacer uso de métodos matemáticos que permitan la manipulación de la información con algún fin específico. Dentro de estos métodos, el análisis multi-resolución se caracteriza por permitir analizar una señal en diferentes escalas, lo que facilita trabajar con datos que puedan tener resoluciones diferentes, tal es el caso de las imágenes obtenidas mediante teledetección. Una de las alternativas para la implementación de análisis multi-resolución es la Transformada Wavelet Compleja de Doble Árbol (DT-CWT). Esta transformada se implementa a partir de dos filtros reales y se caracteriza por presentar invariancia a traslaciones, precio a pagar por su característica de no ser críticamente muestreada. A partir de las características de la DT-CWT se propone su uso en el diseño de algoritmos de procesamiento de imagen, particularmente imágenes de teledetección. Estos nuevos algoritmos de procesamiento digital de imágenes de teledetección corresponden particularmente a fusión y detección de cambios. En este contexto esta tesis presenta tres algoritmos principales aplicados a fusión, evaluación de fusión y detección de cambios en imágenes. Para el caso de fusión de imágenes, se presenta un esquema general que puede ser utilizado con cualquier algoritmo de análisis multi-resolución; este algoritmo parte de la implementación mediante DT-CWT para luego extenderlo a un método alternativo, el filtro bilateral. En cualquiera de los dos casos la metodología implica que la inyección de componentes pueda realizarse mediante diferentes alternativas. En el caso del algoritmo de evaluación de fusión se presenta un nuevo esquema que hace uso de procesos de clasificación, lo que permite evaluar los resultados del proceso de fusión de forma individual para cada tipo de cobertura de uso de suelo que se defina en el proceso de evaluación. Esta metodología permite complementar los procesos de evaluación tradicionales y puede facilitar el análisis del impacto de la fusión sobre determinadas clases de suelo. Finalmente, los algoritmos de detección de cambios propuestos abarcan dos enfoques. El primero está orientado a la obtención de mapas de sequía en datos multi-temporales a partir de índices espectrales. El segundo enfoque propone la utilización de un índice global de calidad espectral como filtro espacial. La utilización de dicho filtro facilita la comparación espectral global entre dos imágenes, esto unido a la utilización de umbrales, conlleva a la obtención de imágenes diferencia que contienen la información de cambio. ABSTRACT Remote sensing is a science relates to information gathering (spectral, spatial, temporal) about an object, area or phenomenon, through the analysis of data acquired by a device that is not in contact with the studied item. In general, data obtained from remote sensing to observe the earth’s surface are images, which are characterized by having a number of applications that are constantly evolving. Therefore, to solve the constant requirements of applications, new algorithms are proposed to improve or facilitate a particular process. With the purpose of developing these algorithms, each application needs mathematical methods, such as the multiresolution analysis which allows to analyze a signal at different scales. One of the options is the Dual Tree Complex Wavelet Transform (DT-CWT) which is implemented from two real filters and is characterized by invariance to translations. Among the advantages of this transform is its successful application in image fusion and change detection areas. In this regard, this thesis presents three algorithms applied to image fusion, assessment for image fusion and change detection in multitemporal images. For image fusion, it is presented a general outline that can be used with any multiresolution analysis technique; this algorithm is proposed at first with DT-CWT and then extends to an alternative method, the bilateral filter. In either case the method involves injection of components by various means. For fusion assessment, the proposal is focused on a scheme that uses classification processes, which allows evaluating merger results individually for each type of land use coverage that is defined in evaluation process. This methodology allows complementing traditional assessment processes and can facilitate impact analysis of the merger on certain kinds of soil. Finally, two approaches of change detection algorithms are included. The first is aimed at obtaining drought maps in multitemporal data from spectral indices. The second one takes a global index of spectral quality as a spatial filter. The use of this filter facilitates global spectral comparison between two images and by means of thresholding, allows imaging containing change information.
Resumo:
This paper proposes an economic instrument designed to assess the competitive nature of the sugar industry in Romania. In the first part of the paper is presented the theoretical background underlying index (HHI) and its calculation methodology. Then comes the results of a first application of this index for a total of 10 plants in the sugar industry, the robustness of these results is discussed. We believe HHI is a proactive tool that may prove useful competition authority, in its pursuit of continuous monitoring of various industries in the economy and in the internal decision-making on resource allocation institution (Peacock, and Prisecaru, 2013).The starting point of our research is to free competition in the European market with competitors much stronger than Romanian plants, plants that produce at a price lower than the domestic ones. In our study we will see if it is a concentration of production in factories around the strongest in Romania, concentration accompanied by the collapse of those who could not resist the market.The market concentration, competition policy, we will follow using the HHI index, for evaluation of impact analysis on existing trade, the number and size of competitors, protecting existing sales structures, avoiding disruptions in the competitive environment, etc.
Resumo:
Transportation infrastructure is known to affect the value of real estate property by virtue of changes in accessibility. The impact of transportation facilities is highly localized as well, and it is possible that spillover effects result from the capitalization of accessibility. The objective of this study was to review the theoretical background related to spatial hedonic models and the opportunities that they provided to evaluate the effect of new transportation infrastructure. An empirical case study is presented: the Madrid Metro Line 12, known as Metrosur, in the region of Madrid, Spain. The effect of proximity to metro stations on housing prices was evaluated. The analysis took into account a host of variables, including structure, location, and neighborhood and made use of three modeling approaches: linear regression estimation with ordinary least squares, spatial error, and spatial lag. The results indicated that better accessibility to Metrosur stations had a positive impact on real estate values and that the effect was marked in cases in which a house was for sale. The results also showed the presence of submarkets, which were well defined by geographic boundaries, and transport fares, which implied that the economic benefits differed across municipalities.
Resumo:
In this paper, the authors present results from a study on the usage rate of 2.0 tools and technologies among Spanish enterprises. The main objective of the study is to analyze, from the perceptions of executives, the influence of social software tools on a set of business processes. This analysis has been made using two graphic tools: the “2.0 Success Matrix” and the “Tool’s Footprint”. Both the review of literature and the empirical work have lead to important findings and conclusions.
Resumo:
Abstract This paper describes a two-part methodology for managing the risk posed by water supply variability to irrigated agriculture. First, an econometric model is used to explain the variation in the production value of irrigated agriculture. The explanatory variables include an index of irrigation water availability (surface storage levels), a price index representative of the crops grown in each geographical unit, and a time variable. The model corrects for autocorrelation and it is applied to 16 representative Spanish provinces in terms of irrigated agriculture. In the second part, the fitted models are used for the economic evaluation of drought risk. In flow variability in the hydrological system servicing each province is used to perform ex-ante evaluations of economic output for the upcoming irrigation season. The model?s error and the probability distribution functions (PDFs) of the reservoirs? storage variations are used to generate Monte Carlo (Latin Hypercube) simulations of agricultural output 7 and 3 months prior to the irrigation season. The results of these simulations illustrate the different risk profiles of each management unit, which depend on farm productivity and on the probability distribution function of water in flow to reservoirs. The potential for ex-ante drought impact assessments is demonstrated. By complementing hydrological models, this method can assist water managers and decisionmakers in managing reservoirs.
Resumo:
This paper studies the effect of different penetration rates of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EV) in the Spanish electrical system. A stochastic model for the average trip evaluation and for the arriving and departure times is used to determine the availability of the vehicles for charging. A novel advanced charging algorithm is proposed, which avoids any communication among all agents. Its performance is determined through different charging scenarios.