82 resultados para Enrico Fermi Atomic Power Plant (Mich.)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The run-of-river hydro power plant usually have low or nil water storage capacity, and therefore an adequate control strategy is required to keep the water level constant in pond. This paper presents a novel technique based on TSK fuzzy controller to maintain the pond head constant. The performance is investigated over a wide range of hill curve of hydro turbine. The results are compared with PI controller as discussed in [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical Protection systems and Automatic Voltage Regulators (AVR) are essential components of actual power plants. Its installation and setting is performed during the commissioning, and it needs extensive experience since any failure in this process or in the setting, may entails some risk not only for the generator of the power plant, but also for the reliability of the power grid. In this paper, a real time power plant simulation platform is presented as a tool for improving the training and learning process on electrical protections and automatic voltage regulators. The activities of the commissioning procedure which can be practiced are described, and the applicability of this tool for improving the comprehension of this important part of the power plants is discussed. A commercial AVR and a multifunction protective relay have been tested with satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of a Power Plant is affected by the distribution of the pulverized coal within the furnace. The coal, which is pulverized in the mills, is transported and distributed by the primary gas through the mill-ducts to the interior of the furnace. This is done with a double function: dry and enter the coal by different levels for optimizing the combustion in the sense that a complete combustion occurs with homogeneous heat fluxes to the walls. The mill-duct systems of a real Power Plant are very complex and they are not yet well understood. In particular, experimental data concerning the mass flows of coal to the different levels are very difficult to measure. CFD modeling can help to determine them. An Eulerian/Lagrangian approach is used due to the low solid–gas volume ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays increasing fuel prices and upcoming pollutant emission regulations are becoming a growing concern for the shipping industry worldwide. While fuel prices will keep rising in future years, the new International Convention for the Prevention of Pollution from Ships (MARPOL) and Sulphur Emissions Control Areas (SECA) regulations will forbid ships to use heavy fuel oils at certain situations. To fulfil with these regulations, the next step in the marine shipping business will comprise the use of cleaner fuels on board as well as developing new propulsion concept. In this work a new conceptual marine propulsion system is developed, based on the integration of diesel generators with fuel cells in a 2850 metric tonne of deadweight platform supply vessel. The efficiency of the two 250 kW methanol-fed Solid Oxide Fuel Cell (SOFC) system installed on board combined with the hydro dynamically optimized design of the hull of the ship will allow the ship to successfully operate at certain modes of operation while notably reduce the pollutant emissions to the atmosphere. Besides the cogeneration heat obtained from the fuel cell system will be used to answer different heating needs on board the vessel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents results of the validity study of the use of MATLAB/Simulink synchronous-machine block for power-system stability studies. Firstly, the waveforms of the theoretical synchronous-generator short-circuit currents are described. Thereafter, the comparison between the currents obtained through the simulation model in the sudden short-circuit test, are compared to the theoretical ones. Finally, the factory tests of two commercial generating units are compared to the response of the synchronous generator simulation block during sudden short-circuit, set with the same real data, with satisfactory results. This results show the validity of the use of this generator block for power plant simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful experience of the Jose Cabrera Nuclear Power Plant Interactive Graphical Simulator implementation in the Nuclear Engineering Department in the Universidad Polite´cnica de Madrid, for the Education and Training of nuclear engineers is shown in this paper. The paper starts with the objectives and the description of the Simulator Aula, and the methodology of work following the recommendations of the IAEA for the use of nuclear reactor simulators for education. The practices and material prepared for the students, as well as the operational and accident situations simulated are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With electricity consumption increasing within the UnitedStates, new paradigms of delivering electricity are required in order to meet demand. One promising option is the increased use of distributedpowergeneration. Already a growing percentage of electricity generation, distributedgeneration locates the power plant physically close to the consumer, avoiding transmission and distribution losses as well as providing the possibility of combined heat and power. Despite the efficiency gains possible, regulators and utilities have been reluctant to implement distributedgeneration, creating numerous technical, regulatory, and business barriers. Certain governments, most notable California, are making concerted efforts to overcome these barriers in order to ensure distributedgeneration plays a part as the country meets demand while shifting to cleaner sources of energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, computer simulators are becoming basic tools for education and training in many engineering fields. In the nuclear industry, the role of simulation for training of operators of nuclear power plants is also recognized of the utmost relevance. As an example, the International Atomic Energy Agency sponsors the development of nuclear reactor simulators for education, and arranges the supply of such simulation programs. Aware of this, in 2008 Gas Natural Fenosa, a Spanish gas and electric utility that owns and operate nuclear power plants and promotes university education in the nuclear technology field, provided the Department of Nuclear Engineering of Universidad Politécnica de Madrid with the Interactive Graphic Simulator (IGS) of “José Cabrera” (Zorita) nuclear power plant, an industrial facility whose commercial operation ceased definitively in April 2006. It is a state-of-the-art full-scope real-time simulator that was used for training and qualification of the operators of the plant control room, as well as to understand and analyses the plant dynamics, and to develop, qualify and validate its emergency operating procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the dynamic response of a hydro power plant for providing secondary regulation reserve is studied in detail. Special emphasis is given to the elastic water column effects both in the penstock and the tailrace tunnel. For this purpose, a nonlinear model based on the analogy between mass and momentum conservation equations of a water conduit and those of wave propagation in transmission lines is used. The influence of the plant configuration and design parameters on the fulfilment of the Spanish Electrical System Operator requirements is analysed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the dynamic response of a hydro power plant for providing secondary regulation reserve is studied in detail. S pecial emphasis is given to the elastic water column effects both in the penstock and the tailrace tunnel. For this purpose, a nonline ar model based on the analogy between mass and momentum conservation equations of a water conduit and those of wave propagation in transmission lines is used. The influence of the plant configuration and design parameters on the fulfilment of the Spanish Electrical System Operator requirem ents is analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europe needs to restructure its energy system. The aim to decrease the reliance on fossil fuels to a higher dependence on renewable energy has now been imposed by The European Commission. In order to achieve this goal there is a great interest in Norway to become "The Green Battery of Europe". In the pursuit of this goal a GIS-tool was created to investigate the pump storage potential in Norway. The tool searches for possible connections between existing reservoirs and dams with the criteria selected by the user. The aim of this thesis was to test the tool and see if the results suggested were plausible, develop a cost calculation method for the PSH lines, and make suggestions for further development of the tool. During the process the tool presented many non-feasible pumped storage hydropower (PSH) connections. The area of Telemark was chosen for the more detailed study. The results were discussed and some improvements were suggested for further development of the tool. Also a sensitivity test was done to see which of the parameters set by the user are the most relevant for the PSH connection suggestion. From a range of the most promising PSH plants suggested by the tool, the one between Songavatn and Totak was chosen for a case study, where there already exists a power plant between both reservoirs. A new Pumped Storage Plant was designed with a power production of 1200 MW. There are still many topics open to discussion, such as how to deal with environmental restrictions, or how to deal with inflows and outflows of the reservoirs from the existing power plants. Consequently the GIS-tool can be a very useful tool to establish the best possible connections between existing reservoirs and dams, but it still needs a deep study and the creation of new parameters for the user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance efficiency of electrodynamic bare tethers acting as thrusters in low Earth orbit, as gauged by the ratio of the system mass dedicated to thrust over mission impulse, is analyzed and compared to the performance efficiency of electrical thrusters. Tether systems are much lighter for times beyond six months in space-tug operations, where there is a dedicated solar array, and beyond one month for reboost of the International Space Station, where the solar array is already in place. Bare-tether propulsive efficiency itself, with the tether considered as part of the power plant, is higher for space tugs. Tether optimization shows that thin tapes have greater propulsive efficiency and are less sensitive to plasma density variations in orbit than cylindrical tethers. The efficiency increases with tape length if some segment next to the power supply at the top is insulated to make the tether potential bias vanish at the lower end; multitape tethers must be used to keep the efficiency high at high thrust levels. The efficiency has a maximum for tether-hardware mass equal to the fraction of power-subsystem mass going into ohmic power, though the maximum is very flat. For space tugs, effects of induced-bias changes in orbit might need to be reduced by choosing a moderately large power-subsystem to tether-hardware mass ratio or by tracking the current-voltage characteristic of the solar array.