4 resultados para Electron Diffusion

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of a low-temperature (LT) tail after P emitter diffusion was shown to lead to considerable improvements in electron lifetime and solar cell performance by different researchers. So far, the drawback of the investigated extended gettering treatments has been the lack of knowledge about optimum annealing times and temperatures and the important increase in processing time. In this manuscript, we calculate optimum annealing temperatures of Fe-contaminated Si wafers for different annealing durations. Subsequently, it is shown theoretically and experimentally that a relatively short LT tail of 15 min can lead to a significant reduction of interstitial Fe and an increase in electron lifetime. Finally, we calculate the potential improvement of solar cell efficiency when such a short-tail extended P diffusion gettering is included in an industrial fabrication process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single, nonlocal expression for the electron heat flux, which closely reproduces known results at high and low ion charge number 2, and “exact” results for the local limit at all 2, is derived by solving the kinetic equation in a narrow, tail-energy range. The solution involves asymptotic expansions of Bessel functions of large argument, and (Z-dependent)order above or below it, corresponding to the possible parabolic or hyperbolic character of the kinetic equation; velocity space diffusion in self-scattering is treated similarly to isotropic thermalization of tail energies in large Z analyses. The scale length H characterizing nonlocal effects varies with Z, suggesting an equal dependence of any ad hoc flux limiter. The model is valid for all H above the mean-free path for thermal electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wide experimental evidence of the phosphorus diffusion gettering beneficial effect on solar grade silicon is found by measuring electron effective lifetime and interstitial iron concentration in as-grown and post processed samples from two ingots of upgraded metallurgical grade silicon produced by Ferrosolar. Results after two different P-diffusion processes are compared: P emitter diffusion at 850ºC followed by fast cool-down (called “standard process”) or followed by slow cool-down (called “extended process”). It is shown that final lifetimes of this low cost material are in the range of those obtained with conventional material. The extended process can be beneficial for wafers with specific initial distribution and concentration of iron, e.g. materials with high concentration of big Fe precipitates, while for other cases the standard process is enough efficient. An analysis based on the comparison of measured lifetime and dissolved iron concentration with theoretical calculations helps to infer the initial iron distribution and concentration, and according to that, choose the more effective type of gettering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hall Effect Thruster (HET) is a type of satellite electric propulsion device initially developed in the 1960’s independently by USA and the former USSR. The development continued in the shadow during the 1970’s in the Soviet Union to reach a mature status from the technological point of view in the 1980’s. In the 1990’s the advanced state of this Russian technology became known in western countries, which rapidly restarted the analysis and development of modern Hall thrusters. Currently, there are several companies in USA, Russia and Europe manufacturing Hall thrusters for operational use. The main applications of these thrusters are low-thrust propulsion of interplanetary probes, orbital raising of satellites and stationkeeping of geostationary satellites. However, despite the well proven in-flight experience, the physics of the Hall Thruster are not completely understood yet. Over the last two decades large efforts have been dedicated to the understanding of the physics of Hall Effect thrusters. However, the so-called anomalous diffusion, short name for an excessive electron conductivity along the thruster, is not yet fully understood as it cannot be explained with classical collisional theories. One commonly accepted explanation is the existence of azimuthal oscillations with correlated plasma density and electric field fluctuations. In fact, there is experimental evidence of the presence of an azimuthal oscillation in the low frequency range (a few kHz). This oscillation, usually called spoke, was first detected empirically by Janes and Lowder in the 1960s. More recently several experiments have shown the existence of this type of oscillation in various modern Hall thrusters. Given the frequency range, it is likely that the ionization is the cause of the spoke oscillation, like for the breathing mode oscillation. In the high frequency range (a few MHz), electron-drift azimuthal oscillations have been detected in recent experiments, in line with the oscillations measured by Esipchuk and Tilinin in the 1970’s. Even though these low and high frequency azimuthal oscillations have been known for quite some time already, the physics behind them are not yet clear and their possible relation with the anomalous diffusion process remains an unknown. This work aims at analysing from a theoretical point of view and via computer simulations the possible relation between the azimuthal oscillations and the anomalous electron transport in HET. In order to achieve this main objective, two approaches are considered: local linear stability analyses and global linear stability analyses. The use of local linear stability analyses shall allow identifying the dominant terms in the promotion of the oscillations. However, these analyses do not take into account properly the axial variation of the plasma properties along the thruster. On the other hand, global linear stability analyses do account for these axial variations and shall allow determining how the azimuthal oscillations are promoted and their possible relation with the electron transport.