8 resultados para Ehrenfest classical quantum theorem

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the spray pyrolysis methodology in its classical configuration we have grown self-assembled MgxZn1−xO quantum dots (size [similar]4–6 nm) in the overall range of compositions 0 ≤ x ≤ 1 on c-sapphire, Si (100) and quartz substrates. Composition of the quantum dots was determined by means of transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy. Selected area electron diffraction reveals the growth of single phase hexagonal MgxZn1−xO quantum dots with composition 0 ≤ x ≤ 0.32 by using a nominal concentration of Mg in the range 0 to 45%. Onset of Mg concentration about 50% (nominal) forces the hexagonal lattice to undergo a phase transition from hexagonal to a cubic structure which resulted in the growth of hexagonal and cubic phases of MgxZn1−xO in the intermediate range of Mg concentrations 50 to 85% (0.39 ≤ x ≤ 0.77), whereas higher nominal concentration of Mg ≥ 90% (0.81 ≤ x ≤ 1) leads to the growth of single phase cubic MgxZn1−xO quantum dots. High resolution transmission electron microscopy and fast Fourier transform confirm the results and show clearly distinguishable hexagonal and cubic crystal structures of the respective quantum dots. A difference of 0.24 eV was detected between the core levels (Zn 2p and Mg 1s) measured in quantum dots with hexagonal and cubic structures by X-ray photoemission. The shift of these core levels can be explained in the frame of the different coordination of cations in the hexagonal and cubic configurations. Finally, the optical absorption measurements performed on single phase hexagonal MgxZn1−xO QDs exhibited a clear shift in optical energy gap on increasing the Mg concentration from 0 to 40%, which is explained as an effect of substitution of Zn2+ by Mg2+ in the ZnO lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main obstacles to the widespread adoption of quantum cryptography has been the difficulty of integration into standard optical networks, largely due to the tremendous difference in power of classical signals compared with the single quantum used for quantum key distribution. This makes the technology expensive and hard to deploy. In this letter, we show an easy and straightforward integration method of quantum cryptography into optical access networks. In particular, we analyze how a quantum key distribution system can be seamlessly integrated in a standard access network based on the passive optical and time division multiplexing paradigms. The novelty of this proposal is based on the selective post-processing that allows for the distillation of secret keys avoiding the noise produced by other network users. Importantly, the proposal does not require the modification of the quantum or classical hardware specifications neither the use of any synchronization mechanism between the network and quantum cryptography devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum Key Distribution is carving its place among the tools used to secure communications. While a difficult technology, it enjoys benefits that set it apart from the rest, the most prominent is its provable security based on the laws of physics. QKD requires not only the mastering of signals at the quantum level, but also a classical processing to extract a secret-key from them. This postprocessing has been customarily studied in terms of the efficiency, a figure of merit that offers a biased view of the performance of real devices. Here we argue that it is the throughput the significant magnitude in practical QKD, specially in the case of high speed devices, where the differences are more marked, and give some examples contrasting the usual postprocessing schemes with new ones from modern coding theory. A good understanding of its implications is very important for the design of modern QKD devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract—In this paper we explore how recent technologies can improve the security of optical networks. In particular, we study how to use quantum key distribution(QKD) in common optical network infrastructures and propose a method to overcome its distance limitations. QKD is the first technology offering information theoretic secretkey distribution that relies only on the fundamental principles of quantum physics. Point-to-point QKDdevices have reached a mature industrial state; however, these devices are severely limited in distance, since signals at the quantum level (e.g., single photons) are highly affected by the losses in the communication channel and intermediate devices. To overcome this limitation, intermediate nodes (i.e., repeaters) are used. Both quantum-regime and trusted, classical repeaters have been proposed in the QKD literature, but only the latter can be implemented in practice. As a novelty, we propose here a new QKD network model based on the use of not fully trusted intermediate nodes, referred to as weakly trusted repeaters. This approach forces the attacker to simultaneously break several paths to get access to the exchanged key, thus improving significantly the security of the network. We formalize the model using network codes and provide real scenarios that allow users to exchange secure keys over metropolitan optical networks using only passive components. Moreover, the theoretical framework allows one to extend these scenarios not only to accommodate more complex trust constraints, but also to consider robustness and resiliency constraints on the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. Besides, it has been the cornerstone for a significant mathematical literature on the topic of sampling theorems associated with differential and difference problems. In this work we provide, in an unified way, new and old generalizations of this result corresponding to various different settings; all these generalizations are illustrated with examples. All the different situations along the paper share a basic approach: the functions to be sampled are obtaining by duality in a separable Hilbert space H through an H -valued kernel K defined on an appropriate domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to generate entangled photon-pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users of a network using a single source and wavelength-division multiplexing technologies. Here we show the design of a metropolitan optical network made of tree-type access networks where entangled photon-pairs are distributed to any pair of users, independently of their location. The resulting network improves the reach, number of users and capabilities of existing proposals. Moreover, it is made up of typical commercial components and uses the existing infrastructure, which allows for moderate deployment costs. Finally, we develop a channel plan and a network design that allow direct optical communications, quantum and classical, between any pair of users. Therefore, multiple quantum information technologies can make use of this network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during one-way information reconciliation is flawed and we propose an improved estimate.