30 resultados para Discrete Regression and Qualitative Choice Models

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Void growth in ductile materials is an important problem from the fundamental and technological viewpoint. Most of the models developed to quantify and understand the void growth process did not take into account two important factors: the anisotropic nature of plastic flow in single crystals and the size effects that appear when plastic flow is confined into very small regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El MC en baloncesto es aquel fenómeno relacionado con el juego que presenta unas características particulares determinadas por la idiosincrasia de un equipo y puede afectar a los protagonistas y por ende al devenir del juego. En la presente Tesis se ha estudiado la incidencia del MC en Liga A.C.B. de baloncesto y para su desarrollo en profundidad se ha planteado dos investigaciones una cuantitativa y otra cualitativa cuya metodología se detalla a continuación: La investigación cuantitativa se ha basado en la técnica de estudio del “Performance analysis”, para ello se han estudiado cuatro temporadas de la Liga A.C.B. (del 2007/08 al 2010/11), tal y como refleja en la bibliografía consultada se han tomado como momentos críticos del juego a los últimos cinco minutos de partidos donde la diferencia de puntos fue de seis puntos y todos los Tiempos Extras disputados, de tal manera que se han estudiado 197 momentos críticos. La contextualización del estudio se ha hecho en función de la variables situacionales “game location” (local o visitante), “team quality” (mejores o peores clasificados) y “competition” (fases de LR y Playoff). Para la interpretación de los resultados se han realizado los siguientes análisis descriptivos: 1) Análisis Discriminante, 2) Regresión Lineal Múltiple; y 3) Análisis del Modelo Lineal General Multivariante. La investigación cualitativa se ha basado en la técnica de investigación de la entrevista semiestructurada. Se entrevistaron a 12 entrenadores que militaban en la Liga A.C.B. durante la temporada 2011/12, cuyo objetivo ha sido conocer el punto de vista que tiene el entrenador sobre el concepto del MC y que de esta forma pudiera dar un enfoque más práctico basado en su conocimiento y experiencia acerca de cómo actuar ante el MC en el baloncesto. Los resultados de ambas investigaciones coinciden en señalar la importancia del MC sobre el resultado final del juego. De igual forma, el concepto en sí entraña una gran complejidad por lo que se considera fundamental la visión científica de la observación del juego y la percepción subjetiva que presenta el entrenador ante el fenómeno, para la cual los aspectos psicológicos de sus protagonistas (jugadores y entrenadores) son determinantes. ABSTRACT The Critical Moment (CM) in basketball is a related phenomenon with the game that has particular features determined by the idiosyncrasies of a team and can affect the players and therefore the future of the game. In this Thesis we have studied the impact of CM in the A.C.B. League and from a profound development two investigations have been raised, quantitative and qualitative whose methodology is as follows: The quantitative research is based on the technique of study "Performance analysis", for this we have studied four seasons in the A.C.B. League (2007/08 to 2010/11), and as reflected in the literature the Critical Moments of the games were taken from the last five minutes of games where the point spread was six points and all overtimes disputed, such that 197 critical moments have been studied. The contextualization of the study has been based on the situational variables "game location" (home or away), "team quality" (better or lower classified) and "competition" (LR and Playoff phases). For the interpretation of the results the following descriptive analyzes were performed: 1) Discriminant Analysis, 2) Multiple Linear Regression Analysis; and 3) Analysis of Multivariate General Linear Model. Qualitative research is based on the technique of investigation of a semi-structured interview. 12 coaches who belonged to the A.C.B. League were interviewed in seasons 2011/12, which aimed to determine the point of view that the coach has on the CM concept and thus could give a more practical approach based on their knowledge and experience about how to deal with the CM in basketball. The results of both studies agree on the importance of the CM on the final outcome of the game. Similarly, the concept itself is highly complex so the scientific view of the observation of the game is considered essential as well as the subjective perception the coach presents before the phenomenon, for which the psychological aspects of their characters (players and coaches) are crucial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional development could present different strategies: •Relocation of industry clusters •Foreign Direct Investment attraction •Innovation based on new business models The Regional Government of Madrid (3rd largest GDP in the EU) selected strategic industries to compete & innovate: •Travel & Transportation •Aerospace •Nanotech. & •Biotech. •ICTs. •Energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ripple-based controls can strongly reduce the required output capacitance in PowerSoC converter thanks to a very fast dynamic response. Unfortunately, these controls are prone to sub-harmonic oscillations and several parameters affect the stability of these systems. This paper derives and validates a simulation-based modeling and stability analysis of a closed-loop V 2Ic control applied to a 5 MHz Buck converter using discrete modeling and Floquet theory to predict stability. This allows the derivation of sensitivity analysis to design robust systems. The work is extended to different V 2 architectures using the same methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last years cities around the world have invested important quantities of money in measures for reducing congestion and car-trips. Investments which are nothing but potential solutions for the well-known urban sprawl phenomenon, also called the “development trap” that leads to further congestion and a higher proportion of our time spent in slow moving cars. Over the path of this searching for solutions, the complex relationship between urban environment and travel behaviour has been studied in a number of cases. The main question on discussion is, how to encourage multi-stop tours? Thus, the objective of this paper is to verify whether unobserved factors influence tour complexity. For this purpose, we use a data-base from a survey conducted in 2006-2007 in Madrid, a suitable case study for analyzing urban sprawl due to new urban developments and substantial changes in mobility patterns in the last years. A total of 943 individuals were interviewed from 3 selected neighbourhoods (CBD, urban and suburban). We study the effect of unobserved factors on trip frequency. This paper present the estimation of an hybrid model where the latent variable is called propensity to travel and the discrete choice model is composed by 5 alternatives of tour type. The results show that characteristics of the neighbourhoods in Madrid are important to explain trip frequency. The influence of land use variables on trip generation is clear and in particular the presence of commercial retails. Through estimation of elasticities and forecasting we determine to what extent land-use policy measures modify travel demand. Comparing aggregate elasticities with percentage variations, it can be seen that percentage variations could lead to inconsistent results. The result shows that hybrid models better explain travel behavior than traditional discrete choice models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the regression framework, we show how different levels of nonlinearity influence the instantaneous firing rate prediction of single neurons. Nonlinearity can be achieved in several ways. In particular, we can enrich the predictor set with basis expansions of the input variables (enlarging the number of inputs) or train a simple but different model for each area of the data domain. Spline-based models are popular within the first category. Kernel smoothing methods fall into the second category. Whereas the first choice is useful for globally characterizing complex functions, the second is very handy for temporal data and is able to include inner-state subject variations. Also, interactions among stimuli are considered. We compare state-of-the-art firing rate prediction methods with some more sophisticated spline-based nonlinear methods: multivariate adaptive regression splines and sparse additive models. We also study the impact of kernel smoothing. Finally, we explore the combination of various local models in an incremental learning procedure. Our goal is to demonstrate that appropriate nonlinearity treatment can greatly improve the results. We test our hypothesis on both synthetic data and real neuronal recordings in cat primary visual cortex, giving a plausible explanation of the results from a biological perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several international studies have analyzed the acceptability of road pricing schemes by means of an attitude survey in combination with the results of a stated choice experiment using both a descriptive analysis and a discrete-choice model with binary choice (?accept? or ?not accept? the toll). However, the use of hybrid discrete choice models constitutes an innovative alternative for integrating subjective attitudes and perceptions deriving from the survey of attitudes with the more objective variables from the stated choice experiment. This paper analyzes the results of applying these models to measure the acceptability of interurban road pricing among different groups of stakeholders (road freight and passenger operators, highway concessionaires, and associations of private car users) with qualitatively significant opinions on road pricing measures. Our results show that hybrid models are better suited to explaining the acceptability of a road pricing scheme by different groups of stakeholders than a separate analysis of the survey of attitudes and a discrete-choice model applied on a stated choice experiment. A particular finding was that the strong psycho-social latent variable of the perception of fairness explains the rejection or acceptance of a toll scheme by road stakeholders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To develop effective cycling policies, decision makers and administrators should know the factors influencing the use of the bicycle for daily mobility. Traditional discrete choice models tend to be based on variables such as time and cost, which do not sufficiently explain the choice of the bicycle as a mode of transportation. Because psychological factors have been identified as particularly influential in the decision to commute by bicycle, this paper examines the perceptions of cycling factors and their influence on commuting by bicycle. Perceptions are measured by attitudes, other psychological variables, and habits. Statistical differences in the variables are established in relation to the choice of commuting mode and bicycle experience (commuter, sport-leisure, no use). Doing so enables the authors to identify the main barriers to commuting by bicycle and to make recommendations for cycling policies. Two underlying structures (factors) of the attitudinal variables are identified: direct benefits and long-term benefits. Three other factors are related to variables of difficulty: physical conditions, external facilities, and individual capacities. The effect of attitudes and other psychological variables on people's decision to cycle to work-place of study is tested by using a logit model. In the case study of Madrid, Spain, the decision to cycle to work-place of study is heavily influenced by cycling habits (for noncommuting trips). Because bicycle commuting is not common, attitudes and other psychological variables play a less important role in the use of bikes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To develop effective cycling policies, decision makers and administrators should know the factors influencing the use of the bicycle for daily mobility. Traditional discrete choice models tend to be based on variables such as time and cost, which do not sufficiently explain the choice of the bicycle as a mode of transportation. Because psychological factors have been identified as particularly influential in the decision to commute by bicycle, this paper examines the perceptions of cycling factors and their influence on commuting by bicycle. Perceptions are measured by attitudes, other psychological variables, and habits. Statistical differences in the variables are established in relation to the choice of commuting mode and bicycle experience (commuter, sport–leisure, no use). Doing so enables the authors to identify the main barriers to commuting by bicycle and to make recommendations for cycling policies. Two underlying structures (factors) of the attitudinal variables are identified: direct benefits and long-term benefits. Three other factors are related to variables of difficulty: physical conditions, external facilities, and individual capacities. The effect of attitudes and other psychological variables on people’s decision to cycle to work–place of study is tested by using a logit model. In the case study of Madrid, Spain, the decision to cycle to work– place of study is heavily influenced by cycling habits (for noncommuting trips). Because bicycle commuting is not common, attitudes and other psychological variables play a less important role in the use of bikes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las alteraciones del sistema climático debido al aumento de concentraciones de gases de efecto invernadero (GEI) en la atmósfera, tendrán implicaciones importantes para la agricultura, el medio ambiente y la sociedad. La agricultura es una fuente importante de emisiones de gases de efecto invernadero (globalmente contribuye al 12% del total de GEI), y al mismo tiempo puede ser parte de la solución para mitigar las emisiones y adaptarse al cambio climático. Las acciones frente al desafío del cambio climático deben priorizar estrategias de adaptación y mitigación en la agricultura dentro de la agenda para el desarrollo de políticas. La agricultura es por tanto crucial para la conservación y el uso sostenible de los recursos naturales, que ya están sometidos a impactos del cambio climático, al mismo tiempo que debe suministrar alimentos para una población creciente. Por tanto, es necesaria una coordinación entre las actuales estrategias de política climática y agrícola. El concepto de agricultura climáticamente inteligente ha surgido para integrar todos estos servicios de la producción agraria. Al evaluar opciones para reducir las amenazas del cambio climático para la agricultura y el medio ambiente, surgen dos preguntas de investigación: • ¿Qué información es necesaria para definir prácticas agrarias inteligentes? • ¿Qué factores influyen en la implementación de las prácticas agrarias inteligentes? Esta Tesis trata de proporcionar información relevante sobre estas cuestiones generales con el fin de apoyar el desarrollo de la política climática. Se centra en sistemas agrícolas Mediterráneos. Esta Tesis integra diferentes métodos y herramientas para evaluar las alternativas de gestión agrícola y políticas con potencial para responder a las necesidades de mitigación y adaptación al cambio climático. La investigación incluye enfoques cuantitativos y cualitativos e integra variables agronómicas, de clima y socioeconómicas a escala local y regional. La investigación aporta una recopilación de datos sobre evidencia experimental existente, y un estudio integrado sobre el comportamiento de los agricultores y las posibles alternativas de cambio (por ejemplo, la tecnología, la gestión agrícola y la política climática). Los casos de estudio de esta Tesis - el humedal de Doñana (S España) y la región de Aragón (NE España) - permiten ilustrar dos sistemas Mediterráneos representativos, donde el uso intensivo de la agricultura y las condiciones semiáridas son ya una preocupación. Por este motivo, la adopción de estrategias de mitigación y adaptación puede desempeñar un papel muy importante a la hora de encontrar un equilibrio entre la equidad, la seguridad económica y el medio ambiente en los escenarios de cambio climático. La metodología multidisciplinar de esta tesis incluye una amplia gama de enfoques y métodos para la recopilación y el análisis de datos. La toma de datos se apoya en la revisión bibliográfica de evidencia experimental, bases de datos públicas nacionales e internacionales y datos primarios recopilados mediante entrevistas semi-estructuradas con los grupos de interés (administraciones públicas, responsables políticos, asesores agrícolas, científicos y agricultores) y encuestas con agricultores. Los métodos de análisis incluyen: meta-análisis, modelos de gestión de recursos hídricos (modelo WAAPA), análisis multicriterio para la toma de decisiones, métodos estadísticos (modelos de regresión logística y de Poisson) y herramientas para el desarrollo de políticas basadas en la ciencia. El meta-análisis identifica los umbrales críticos de temperatura que repercuten en el crecimiento y el desarrollo de los tres cultivos principales para la seguridad alimentaria (arroz, maíz y trigo). El modelo WAAPA evalúa el efecto del cambio climático en la gestión del agua para la agricultura de acuerdo a diferentes alternativas políticas y escenarios climáticos. El análisis multicriterio evalúa la viabilidad de las prácticas agrícolas de mitigación en dos escenarios climáticos de acuerdo a la percepción de diferentes expertos. Los métodos estadísticos analizan los determinantes y las barreras para la adopción de prácticas agrícolas de mitigación. Las herramientas para el desarrollo de políticas basadas en la ciencia muestran el potencial y el coste para reducir GEI mediante las prácticas agrícolas. En general, los resultados de esta Tesis proporcionan información sobre la adaptación y la mitigación del cambio climático a nivel de explotación para desarrollar una política climática más integrada y ayudar a los agricultores en la toma de decisiones. Los resultados muestran las temperaturas umbral y la respuesta del arroz, el maíz y el trigo a temperaturas extremas, siendo estos valores de gran utilidad para futuros estudios de impacto y adaptación. Los resultados obtenidos también aportan una serie de estrategias flexibles para la adaptación y la mitigación a escala local, proporcionando a su vez una mejor comprensión sobre las barreras y los incentivos para su adopción. La capacidad de mejorar la disponibilidad de agua y el potencial y el coste de reducción de GEI se han estimado para estas estrategias en los casos de estudio. Estos resultados podrían ayudar en el desarrollo de planes locales de adaptación y políticas regionales de mitigación, especialmente en las regiones Mediterráneas. ABSTRACT Alterations in the climatic system due to increased atmospheric concentrations of greenhouse gas emissions (GHG) are expected to have important implications for agriculture, the environment and society. Agriculture is an important source of GHG emissions (12 % of global anthropogenic GHG), but it is also part of the solution to mitigate emissions and to adapt to climate change. Responses to face the challenge of climate change should place agricultural adaptation and mitigation strategies at the heart of the climate change agenda. Agriculture is crucial for the conservation and sustainable use of natural resources, which already stand under pressure due to climate change impacts, increased population, pollution and fragmented and uncoordinated climate policy strategies. The concept of climate smart agriculture has emerged to encompass all these issues as a whole. When assessing choices aimed at reducing threats to agriculture and the environment under climate change, two research questions arise: • What information defines smart farming choices? • What drives the implementation of smart farming choices? This Thesis aims to provide information on these broad questions in order to support climate policy development focusing in some Mediterranean agricultural systems. This Thesis integrates methods and tools to evaluate potential farming and policy choices to respond to mitigation and adaptation to climate change. The assessment involves both quantitative and qualitative approaches and integrates agronomic, climate and socioeconomic variables at local and regional scale. The assessment includes the collection of data on previous experimental evidence, and the integration of farmer behaviour and policy choices (e.g., technology, agricultural management and climate policy). The case study areas -- the Doñana coastal wetland (S Spain) and the Aragón region (NE Spain) – illustrate two representative Mediterranean regions where the intensive use of agriculture and the semi-arid conditions are already a concern. Thus the adoption of mitigation and adaptation measures can play a significant role for reaching a balance among equity, economic security and the environment under climate change scenarios. The multidisciplinary methodology of this Thesis includes a wide range of approaches for collecting and analysing data. The data collection process include revision of existing experimental evidence, public databases and the contribution of primary data gathering by semi-structured interviews with relevant stakeholders (i.e., public administrations, policy makers, agricultural advisors, scientist and farmers among others) and surveys given to farmers. The analytical methods include meta-analysis, water availability models (WAAPA model), decision making analysis (MCA, multi-criteria analysis), statistical approaches (Logistic and Poisson regression models) and science-base policy tools (MACC, marginal abatement cost curves and SOC abatement wedges). The meta-analysis identifies the critical temperature thresholds which impact on the growth and development of three major crops (i.e., rice, maize and wheat). The WAAPA model assesses the effect of climate change for agricultural water management under different policy choices and climate scenarios. The multi-criteria analysis evaluates the feasibility of mitigation farming practices under two climate scenarios according to the expert views. The statistical approaches analyses the drivers and the barriers for the adoption of mitigation farming practices. The science-base policy tools illustrate the mitigation potential and cost effectiveness of the farming practices. Overall, the results of this Thesis provide information to adapt to, and mitigate of, climate change at farm level to support the development of a comprehensive climate policy and to assist farmers. The findings show the key temperature thresholds and response to extreme temperature effects for rice, maize and wheat, so such responses can be included into crop impact and adaptation models. A portfolio of flexible adaptation and mitigation choices at local scale are identified. The results also provide a better understanding of the stakeholders oppose or support to adopt the choices which could be used to incorporate in local adaptation plans and mitigation regional policy. The findings include estimations for the farming and policy choices on the capacity to improve water supply reliability, abatement potential and cost-effective in Mediterranean regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Locally weighted regression is a technique that predicts the response for new data items from their neighbors in the training data set, where closer data items are assigned higher weights in the prediction. However, the original method may suffer from overfitting and fail to select the relevant variables. In this paper we propose combining a regularization approach with locally weighted regression to achieve sparse models. Specifically, the lasso is a shrinkage and selection method for linear regression. We present an algorithm that embeds lasso in an iterative procedure that alternatively computes weights and performs lasso-wise regression. The algorithm is tested on three synthetic scenarios and two real data sets. Results show that the proposed method outperforms linear and local models for several kinds of scenarios

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente tesis doctoral tiene por objeto el estudio y análisis de técnicas y modelos de obtención de parámetros biofísicos e indicadores ambientales, de manera automatizada a partir de imágenes procedentes de satélite de alta resolución temporal. En primer lugar se revisan los diferentes programas espaciales de observación del territorio, con especial atención a los que proporcionan dicha resolución. También se han revisado las metodologías y procesos que permiten la obtención de diferentes parámetros cuantitativos y documentos cualitativos, relacionados con diversos aspectos de las cubiertas terrestres, atendiendo a su adaptabilidad a las particularidades de los datos. En segundo lugar se propone un modelo de obtención de parámetros ambientales, que integra información proveniente de sensores espaciales y de otras fuentes auxiliares utilizando, en cierta medida, las metodologías presentadas en apartados anteriores y optimizando algunas de las referidas o proponiendo otras nuevas, de manera que se permita dicha obtención de manera eficiente, a partir de los datos disponibles y de forma sistemática. Tras esta revisión de metodologías y propuesta del modelo, se ha procedido a la realización de experimentos, con la finalidad de comprobar su comportamiento en diferentes casos prácticos, depurar los flujos de datos y procesos, así como establecer las situaciones que pueden afectar a los resultados. De todo ello se deducirá la evaluación del referido modelo. Los sensores considerados en este trabajo han sido MODIS, de alta resolución temporal y Thematic Mapper (TM), de media resolución espacial, por tratarse de instrumentos de referencia en la realización de estudios ambientales. También por la duración de sus correspondientes misiones de registro de datos, lo que permite realizar estudios de evolución temporal de ciertos parámetros biofísicos, durante amplios periodos de tiempo. Así mismo. es de destacar que la continuidad de los correspondientes programas parece estar asegurada. Entre los experimentos realizados, se ha ensayado una metodología para la integración de datos procedentes de ambos sensores. También se ha analizado un método de interpolación temporal que permite obtener imágenes sintéticas con la resolución espacial de TM (30 m) y la temporal de MODIS (1 día), ampliando el rango de aplicación de este último sensor. Asimismo, se han analizado algunos de los factores que afectan a los datos registrados, tal como la geometría de la toma de los mismos y los episodios de precipitación, los cuales alteran los resultados obtenidos. Por otro lado, se ha comprobado la validez del modelo propuesto en el estudio de fenómenos ambientales dinámicos, en concreto la contaminación orgánica de aguas embalsadas. Finalmente, se ha demostrado un buen comportamiento del modelo en todos los casos ensayados, así como su flexibilidad, lo que le permite adaptarse a nuevos orígenes de datos, o nuevas metodologías de cálculo. Abstract This thesis aims to the study and analysis of techniques and models, in order to obtain biophysical parameters and environmental indicators in an automated way, using high temporal resolution satellite data. Firstly we have reviewed the main Earth Observation Programs, paying attention to those that provide high temporal resolution. Also have reviewed the methodologies and process flow diagrams in order to obtain quantitative parameters and qualitative documents, relating to various aspects of land cover, according to their adaptability to the peculiarities of the data. In the next stage, a model which allows obtaining environmental parameters, has been proposed. This structure integrates information from space sensors and ancillary data sources, using the methodologies presented in previous sections that permits the parameters calculation in an efficient and automated way. After this review of methodologies and the proposal of the model, we proceeded to carry out experiments, in order to check the behavior of the structure in real situations. From this, we derive the accuracy of the model. The sensors used in this work have been MODIS, which is a high temporal resolution sensor, and Thematic Mapper (TM), which is a medium spatial resolution instrument. This choice was motivated because they are reference sensors in environmental studies, as well as for the duration of their corresponding missions of data logging, and whose continuity seems assured. Among the experiments, we tested a methodology that allows the integration of data from cited sensors, we discussed a proposal for a temporal interpolation method for obtaining synthetic images with spatial resolution of TM (30 m) and temporal of MODIS (1 day), extending the application range of this one. Furthermore, we have analyzed some of the factors that affect the recorded data, such as the relative position of the satellite with the ground point, and the rainfall events, which alter the obtained results. On the other hand, we have proven the validity of the proposed model in the study of the organic contamination in inland water bodies. Finally, we have demonstrated a good performance of the proposed model in all cases tested, as well as its flexibility and adaptability.