9 resultados para Differential Equations with "maxima"

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of a differential invariant for systems of second-order differential equations on a manifold M with respect to the group of vertical automorphisms of the projection is de?ned and the Chern connection attached to a SODE allows one to determine a basis for second-order differential invariants of a SODE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, a considerable number of teachers in Spain have been using DERIVE to teach math subjects in High Schools and Universities. This software has been used by the authors of this work as a support tool in Mathematics courses for Engineering. Since Texas Instruments does not support DERIVE, we were faced with finding an alternative software product, and considering the possibility of using a public-domain software such as MAXIMA. Here we make a comparative study of DERIVE and MAXIMA as support tools for a Calculus course for first year Engineering students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric probes are objects immersed in the plasma with sharp boundaries which collect of emit charged particles. Consequently, the nearby plasma evolves under abrupt imposed and/or naturally emerging conditions. There could be localized currents, different time scales for plasma species evolution, charge separation and absorbing-emitting walls. The traditional numerical schemes based on differences often transform these disparate boundary conditions into computational singularities. This is the case of models using advection-diffusion differential equations with source-sink terms (also called Fokker-Planck equations). These equations are used in both, fluid and kinetic descriptions, to obtain the distribution functions or the density for each plasma species close to the boundaries. We present a resolution method grounded on an integral advancing scheme by using approximate Green's functions, also called short-time propagators. All the integrals, as a path integration process, are numerically calculated, what states a robust grid-free computational integral method, which is unconditionally stable for any time step. Hence, the sharp boundary conditions, as the current emission from a wall, can be treated during the short-time regime providing solutions that works as if they were known for each time step analytically. The form of the propagator (typically a multivariate Gaussian) is not unique and it can be adjusted during the advancing scheme to preserve the conserved quantities of the problem. The effects of the electric or magnetic fields can be incorporated into the iterative algorithm. The method allows smooth transitions of the evolving solutions even when abrupt discontinuities are present. In this work it is proposed a procedure to incorporate, for the very first time, the boundary conditions in the numerical integral scheme. This numerical scheme is applied to model the plasma bulk interaction with a charge-emitting electrode, dealing with fluid diffusion equations combined with Poisson equation self-consistently. It has been checked the stability of this computational method under any number of iterations, even for advancing in time electrons and ions having different time scales. This work establishes the basis to deal in future work with problems related to plasma thrusters or emissive probes in electromagnetic fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study on the manoeuvrability of a riverine support patrol vessel is made to derive a mathematical model and simulate maneuvers with this ship. The vessel is mainly characterized by both its wide-beam and the unconventional propulsion system, that is, a pump-jet type azimuthal propulsion. By processing experimental data and the ship characteristics with diverse formulae to find the proper hydrodynamic coefficients and propulsion forces, a system of three differential equations is completed and tuned to carry out simulations of the turning test. The simulation is able to accept variable speed, jet angle and water depth as input parameters and its output consists of time series of the state variables and a plot of the simulated path and heading of the ship during the maneuver. Thanks to the data of full-scale trials previously performed with the studied vessel, a process of validation was made, which shows a good fit between simulated and full-scale experimental results, especially on the turning diameter

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a system of three partial differential equations modelling the spatiotemporal behaviour of two competitive populations of biological species both of which are attracted chemotactically by the same signal substance. For a range of the parameters the system possesses a uniquely determined spatially homogeneous positive equilibrium (u?, v?) globally asymptotically stable within a certain nonempty range of the logistic growth coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat?s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new three-dimensional analytic optics design method is presented that enables the coupling of three ray sets with only two free-form lens surfaces. Closely related to the Simultaneous Multiple Surface method in three dimensions (SMS3D), it is derived directly from Fermat?s principle, leading to multiple sets of functional differential equations. The general solution of these equations makes it possible to calculate more than 80 coefficients for each implicit surface function. Ray tracing simulations of these free-form lenses demonstrate superior imaging performance for applications with high aspect ratio, compared to conventional rotational symmetric systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the response of mechanical systems to external excitations, even in the simplest cases, involves solving second-order ordinary differential equations or systems thereof. Finding the natural frequencies of a system and understanding the effect of variations of the excitation frequencies on the response of the system are essential when designing mechanisms [1] and structures [2]. However, faced with the mathematical complexity of the problem, students tend to focus on the mathematical resolution rather than on the interpretation of the results. To overcome this difficulty, once the general theoretical problem and its solution through the state space [3] have been presented, Matlab®[4] and Simulink®[5] are used to simulate specific situations. Without them, the discussion of the effect of slight variations in input variables on the outcome of the model becomes burdensome due to the excessive calculation time required. Conversely, with the help of those simulation tools, students can easily reach practical conclusions and their evaluation can be based on their interpretation of results and not on their mathematical skills

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study a system of partial differential equations describing the evolution of a population under chemotactic effects with non-local reaction terms. We consider an external application of chemoattractant in the system and study the cases of one and two populations in competition. By introducing global competitive/cooperative factors in terms of the total mass of the populations, weobtain, forarangeofparameters, thatanysolutionwithpositive and bounded initial data converges to a spatially homogeneous state with positive components. The proofs rely on the maximum principle for spatially homogeneous sub- and super-solutions.