4 resultados para Core Domain
em Universidad Politécnica de Madrid
Resumo:
Semantic Sensor Web infrastructures use ontology-based models to represent the data that they manage; however, up to now, these ontological models do not allow representing all the characteristics of distributed, heterogeneous, and web-accessible sensor data. This paper describes a core ontological model for Semantic Sensor Web infrastructures that covers these characteristics and that has been built with a focus on reusability. This ontological model is composed of different modules that deal, on the one hand, with infrastructure data and, on the other hand, with data from a specific domain, that is, the coastal flood emergency planning domain. The paper also presents a set of guidelines, followed during the ontological model development, to satisfy a common set of requirements related to modelling domain-specific features of interest and properties. In addition, the paper includes the results obtained after an exhaustive evaluation of the developed ontologies along different aspects (i.e., vocabulary, syntax, structure, semantics, representation, and context).
Resumo:
The design of nuclear power plant has to follow a number of regulations aimed at limiting the risks inherent in this type of installation. The goal is to prevent and to limit the consequences of any possible incident that might threaten the public or the environment. To verify that the safety requirements are met a safety assessment process is followed. Safety analysis is as key component of a safety assessment, which incorporates both probabilistic and deterministic approaches. The deterministic approach attempts to ensure that the various situations, and in particular accidents, that are considered to be plausible, have been taken into account, and that the monitoring systems and engineered safety and safeguard systems will be capable of ensuring the safety goals. On the other hand, probabilistic safety analysis tries to demonstrate that the safety requirements are met for potential accidents both within and beyond the design basis, thus identifying vulnerabilities not necessarily accessible through deterministic safety analysis alone. Probabilistic safety assessment (PSA) methodology is widely used in the nuclear industry and is especially effective in comprehensive assessment of the measures needed to prevent accidents with small probability but severe consequences. Still, the trend towards a risk informed regulation (RIR) demanded a more extended use of risk assessment techniques with a significant need to further extend PSA’s scope and quality. Here is where the theory of stimulated dynamics (TSD) intervenes, as it is the mathematical foundation of the integrated safety assessment (ISA) methodology developed by the CSN(Consejo de Seguridad Nuclear) branch of Modelling and Simulation (MOSI). Such methodology attempts to extend classical PSA including accident dynamic analysis, an assessment of the damage associated to the transients and a computation of the damage frequency. The application of this ISA methodology requires a computational framework called SCAIS (Simulation Code System for Integrated Safety Assessment). SCAIS provides accident dynamic analysis support through simulation of nuclear accident sequences and operating procedures. Furthermore, it includes probabilistic quantification of fault trees and sequences; and integration and statistic treatment of risk metrics. SCAIS comprehensively implies an intensive use of code coupling techniques to join typical thermal hydraulic analysis, severe accident and probability calculation codes. The integration of accident simulation in the risk assessment process and thus requiring the use of complex nuclear plant models is what makes it so powerful, yet at the cost of an enormous increase in complexity. As the complexity of the process is primarily focused on such accident simulation codes, the question of whether it is possible to reduce the number of required simulation arises, which will be the focus of the present work. This document presents the work done on the investigation of more efficient techniques applied to the process of risk assessment inside the mentioned ISA methodology. Therefore such techniques will have the primary goal of decreasing the number of simulation needed for an adequate estimation of the damage probability. As the methodology and tools are relatively recent, there is not much work done inside this line of investigation, making it a quite difficult but necessary task, and because of time limitations the scope of the work had to be reduced. Therefore, some assumptions were made to work in simplified scenarios best suited for an initial approximation to the problem. The following section tries to explain in detail the process followed to design and test the developed techniques. Then, the next section introduces the general concepts and formulae of the TSD theory which are at the core of the risk assessment process. Afterwards a description of the simulation framework requirements and design is given. Followed by an introduction to the developed techniques, giving full detail of its mathematical background and its procedures. Later, the test case used is described and result from the application of the techniques is shown. Finally the conclusions are presented and future lines of work are exposed.
Resumo:
Multigroup diffusion codes for three dimensional LWR core analysis use as input data pre-generated homogenized few group cross sections and discontinuity factors for certain combinations of state variables, such as temperatures or densities. The simplest way of compiling those data are tabulated libraries, where a grid covering the domain of state variables is defined and the homogenized cross sections are computed at the grid points. Then, during the core calculation, an interpolation algorithm is used to compute the cross sections from the table values. Since interpolation errors depend on the distance between the grid points, a determined refinement of the mesh is required to reach a target accuracy, which could lead to large data storage volume and a large number of lattice transport calculations. In this paper, a simple and effective procedure to optimize the distribution of grid points for tabulated libraries is presented. Optimality is considered in the sense of building a non-uniform point distribution with the minimum number of grid points for each state variable satisfying a given target accuracy in k-effective. The procedure consists of determining the sensitivity coefficients of k-effective to cross sections using perturbation theory; and estimating the interpolation errors committed with different mesh steps for each state variable. These results allow evaluating the influence of interpolation errors of each cross section on k-effective for any combination of state variables, and estimating the optimal distance between grid points.
Resumo:
The current approach to developing mixed-criticality sys- tems is by partitioning the hardware resources (processors, memory and I/O devices) among the different applications. Partitions are isolated from each other both in the temporal and the spatial domain, so that low-criticality applications cannot compromise other applications with a higher level of criticality in case of misbehaviour. New architectures based on many-core processors open the way to highly parallel systems in which each partition can be allocated to a set of dedicated proces- sor cores, thus simplifying partition scheduling and temporal separation. Moreover, spatial isolation can also benefit from many-core architectures, by using simpler hardware mechanisms to protect the address spaces of different applications. This paper describes an architecture for many- core embedded partitioned systems, together with some implementation advice for spatial isolation.