4 resultados para Conductivity, electrical
em Universidad Politécnica de Madrid
Resumo:
Novel poly(phenylene sulphide) (PPS) nanocomposites reinforced with an aminated derivative (PPS-NH2) covalently attached to acid-treated single-walled carbon nanotubes (SWCNTs) were prepared via simple melt-blending technique. Their morphology, viscoelastic behaviour, electrical conductivity, mechanical and tribological properties were investigated. Scanning electron microscopy revealed that the grafting process was effective in uniformly dispersing the SWCNTs within the matrix. The storage and loss moduli as a function of frequency increased with the SWCNT content, tending to a plateau in the low-frequency regime. The electrical conductivity of the nanocomposites was considerably enhanced in the range 0.1?0.5 wt% SWCNTs; electrical and rheological percolation thresholds occurred at similar nanotube concentrations. Mechanical tests demonstrated that with only 1.0 wt% SWCNTs the Young's modulus and tensile strength of the matrix improved by 51 and 37%, respectively, without decrement in toughness, ascribed to a very efficient load transfer. A moderate decrease in the friction coefficient and a 75% reduction in wear rate were found for the abovementioned nanotube loading, indicating that PPS-NH2-g-SWCNTs are good tribological additives for thermoplastic polymers. Based on the promising results obtained in this work, it is expected that these nanofillers will be used to develop high-performance thermoplastic/CNT nanocomposites for structural applications.
Resumo:
The control of carbon nanotubes conductivity is generating interest in several fields since it may be relevant for a number of applications. The self-organizing properties of liquid crystals may be used to impose alignment on dispersed carbon nanotubes,thus control-ling their conductivity and its anisotropy. This leads to a number of possible applications in photonic and electronic devices such as electrically controlled carbon nanotube switch- es and crossboards. In this work, cells of liquid crystals doped with multi-walled nanotubes have been prepared in different configurations. Their conductivity variations upon switching have been investigated. It turns out that conductivity evolution depends on the initial configuration (either homogeneous, homeotropic or in-plane switching), the cell thickness and the switching record. The control of these manufacturing paramenters allows the modulation of the electrical behavior of carbon nanotubes.
Resumo:
The objective of this work was to evaluate the use of the conductivity test as a means of predicting seed viability in seven Passiflora species: P. alata, P. cincinnata, P. edulis f. edulis, P. edulis f. flavicarpa, P. morifolia, P. mucronata, and P. nitida. Conductivity of non?desiccated (control), desiccated, and non?desiccated cryopreserved seeds was determined and related to their germination percentage. The obtained results suggest that the electrical conductivity test has potential as a germination predictor for P. edulis f. flavicarpa seed lots, but not for the other tested species. Index terms: Passiflora, seed cryopreservation, seed desiccation, seed viability.
Resumo:
Conductive nanoparticles, especially elongated ones such as carbon nanotubes, dramatically modify the electrical behavior of liquid crystal cells. These nanoparticles are known to reorient with liquid crystals in electric fields, causing significant variations of conductivity at minute concentrations of tens or hundreds ppm. The above notwithstanding, impedance spectroscopy of doped cells in the frequency range customarily employed by liquid crystal devices, 100 Hz?10 kHz, shows a relatively simple resistor/capacitor response where the components of the cell can be univocally assigned to single components of the electrical equivalent circuit. However, widening the frequency range up to 1 MHz or beyond reveals a complex behavior that cannot be explained with the same simple EEC. Moreover, the system impedance varies with the application of electric fields, their effect remaining after removing the field. Carbon nanotubes are reoriented together with liquid crystal reorientation when applying voltage, but barely reoriented back upon liquid crystal relaxation once the voltage is removed. Results demonstrate a remarkable variation in the impedance of the dielectric blend formed by liquid crystal and carbon nanotubes, the irreversible orientation of the carbon nanotubes and possible permanent contacts between electrodes.