The peculiar electrical response of liquid crystal-carbon nanotube systems as seen by impedance spectroscopy


Autoria(s): García García, Amanda; Vergaz, Ricardo; Algorri Genaro, José Francisco; Geday, Morten Andreas; Otón Sánchez, José Manuel
Data(s)

01/08/2015

31/12/1969

Resumo

Conductive nanoparticles, especially elongated ones such as carbon nanotubes, dramatically modify the electrical behavior of liquid crystal cells. These nanoparticles are known to reorient with liquid crystals in electric fields, causing significant variations of conductivity at minute concentrations of tens or hundreds ppm. The above notwithstanding, impedance spectroscopy of doped cells in the frequency range customarily employed by liquid crystal devices, 100 Hz?10 kHz, shows a relatively simple resistor/capacitor response where the components of the cell can be univocally assigned to single components of the electrical equivalent circuit. However, widening the frequency range up to 1 MHz or beyond reveals a complex behavior that cannot be explained with the same simple EEC. Moreover, the system impedance varies with the application of electric fields, their effect remaining after removing the field. Carbon nanotubes are reoriented together with liquid crystal reorientation when applying voltage, but barely reoriented back upon liquid crystal relaxation once the voltage is removed. Results demonstrate a remarkable variation in the impedance of the dielectric blend formed by liquid crystal and carbon nanotubes, the irreversible orientation of the carbon nanotubes and possible permanent contacts between electrodes.

Formato

application/pdf

Identificador

http://oa.upm.es/40704/

Idioma(s)

eng

Publicador

E.T.S.I. Telecomunicación (UPM)

Relação

http://oa.upm.es/40704/1/INVE_MEM_2015_203242.pdf

http://iopscience.iop.org/article/10.1088/0022-3727/48/37/375302/meta

S2013/ MIT-2790

TEC2013-47342-C2

info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/0022-3727/48/37/375302

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Journal of Physics D: Applied Physics, ISSN 0022-3727, 2015-08, Vol. 48, No. 37

Palavras-Chave #Electrónica #Física #Telecomunicaciones
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed