7 resultados para Color-Digital imaging
em Universidad Politécnica de Madrid
Resumo:
La identificación automática de las fases minerales visibles en probetas pulidas mediante un sistema experto es un pre-requisito indispensable para la aplicación de las técnicas tradicionales de microscopía a los problemas industriales con un elevado rendimiento. Para su consecución, ha sido necesario obtener una óptima y homogénea calidad de pulido en las muestras utilizadas, lograr la puesta a punto del equipo de Análisis digital de imagen -ADI- y aplicar un análisis multiespectral sobre la imagen en color (RGB) obtenida en origen. Para este estudio inicial fueron analizadas un conjunto de probetas de menas sulfuradas con los minerales más comunes: la colección Rehwald, descrita por Randohr (1980) y estudiadas de nuevo para este objetivo específico.
Resumo:
The reconstruction of the cell lineage tree of early zebrafish embryogenesis requires the use of in-vivo microscopy imaging and image processing strategies. Second (SHG) and third harmonic generation (THG) microscopy observations in unstained zebrafish embryos allows to detect cell divisions and cell membranes from 1-cell to 1K-cell stage. In this article, we present an ad-hoc image processing pipeline for cell tracking and cell membranes segmentation enabling the reconstruction of the early zebrafish cell lineage tree until the 1K-cell stage. This methodology has been used to obtain digital zebrafish embryos allowing to generate a quantitative description of early zebrafish embryogenesis with minute temporal accuracy and μm spatial resolution
Resumo:
Abstract The creation of atlases, or digital models where information from different subjects can be combined, is a field of increasing interest in biomedical imaging. When a single image does not contain enough information to appropriately describe the organism under study, it is then necessary to acquire images of several individuals, each of them containing complementary data with respect to the rest of the components in the cohort. This approach allows creating digital prototypes, ranging from anatomical atlases of human patients and organs, obtained for instance from Magnetic Resonance Imaging, to gene expression cartographies of embryo development, typically achieved from Light Microscopy. Within such context, in this PhD Thesis we propose, develop and validate new dedicated image processing methodologies that, based on image registration techniques, bring information from multiple individuals into alignment within a single digital atlas model. We also elaborate a dedicated software visualization platform to explore the resulting wealth of multi-dimensional data and novel analysis algo-rithms to automatically mine the generated resource in search of bio¬logical insights. In particular, this work focuses on gene expression data from developing zebrafish embryos imaged at the cellular resolution level with Two-Photon Laser Scanning Microscopy. Disposing of quantitative measurements relating multiple gene expressions to cell position and their evolution in time is a fundamental prerequisite to understand embryogenesis multi-scale processes. However, the number of gene expressions that can be simultaneously stained in one acquisition is limited due to optical and labeling constraints. These limitations motivate the implementation of atlasing strategies that can recreate a virtual gene expression multiplex. The developed computational tools have been tested in two different scenarios. The first one is the early zebrafish embryogenesis where the resulting atlas constitutes a link between the phenotype and the genotype at the cellular level. The second one is the late zebrafish brain where the resulting atlas allows studies relating gene expression to brain regionalization and neurogenesis. The proposed computational frameworks have been adapted to the requirements of both scenarios, such as the integration of partial views of the embryo into a whole embryo model with cellular resolution or the registration of anatom¬ical traits with deformable transformation models non-dependent on any specific labeling. The software implementation of the atlas generation tool (Match-IT) and the visualization platform (Atlas-IT) together with the gene expression atlas resources developed in this Thesis are to be made freely available to the scientific community. Lastly, a novel proof-of-concept experiment integrates for the first time 3D gene expression atlas resources with cell lineages extracted from live embryos, opening up the door to correlate genetic and cellular spatio-temporal dynamics. La creación de atlas, o modelos digitales, donde la información de distintos sujetos puede ser combinada, es un campo de creciente interés en imagen biomédica. Cuando una sola imagen no contiene suficientes datos como para describir apropiadamente el organismo objeto de estudio, se hace necesario adquirir imágenes de varios individuos, cada una de las cuales contiene información complementaria respecto al resto de componentes del grupo. De este modo, es posible crear prototipos digitales, que pueden ir desde atlas anatómicos de órganos y pacientes humanos, adquiridos por ejemplo mediante Resonancia Magnética, hasta cartografías de la expresión genética del desarrollo de embrionario, típicamente adquiridas mediante Microscopía Optica. Dentro de este contexto, en esta Tesis Doctoral se introducen, desarrollan y validan nuevos métodos de procesado de imagen que, basándose en técnicas de registro de imagen, son capaces de alinear imágenes y datos provenientes de múltiples individuos en un solo atlas digital. Además, se ha elaborado una plataforma de visualization específicamente diseñada para explorar la gran cantidad de datos, caracterizados por su multi-dimensionalidad, que resulta de estos métodos. Asimismo, se han propuesto novedosos algoritmos de análisis y minería de datos que permiten inspeccionar automáticamente los atlas generados en busca de conclusiones biológicas significativas. En particular, este trabajo se centra en datos de expresión genética del desarrollo embrionario del pez cebra, adquiridos mediante Microscopía dos fotones con resolución celular. Disponer de medidas cuantitativas que relacionen estas expresiones genéticas con las posiciones celulares y su evolución en el tiempo es un prerrequisito fundamental para comprender los procesos multi-escala característicos de la morfogénesis. Sin embargo, el número de expresiones genéticos que pueden ser simultáneamente etiquetados en una sola adquisición es reducido debido a limitaciones tanto ópticas como del etiquetado. Estas limitaciones requieren la implementación de estrategias de creación de atlas que puedan recrear un multiplexado virtual de expresiones genéticas. Las herramientas computacionales desarrolladas han sido validadas en dos escenarios distintos. El primer escenario es el desarrollo embrionario temprano del pez cebra, donde el atlas resultante permite constituir un vínculo, a nivel celular, entre el fenotipo y el genotipo de este organismo modelo. El segundo escenario corresponde a estadios tardíos del desarrollo del cerebro del pez cebra, donde el atlas resultante permite relacionar expresiones genéticas con la regionalización del cerebro y la formación de neuronas. La plataforma computacional desarrollada ha sido adaptada a los requisitos y retos planteados en ambos escenarios, como la integración, a resolución celular, de vistas parciales dentro de un modelo consistente en un embrión completo, o el alineamiento entre estructuras de referencia anatómica equivalentes, logrado mediante el uso de modelos de transformación deformables que no requieren ningún marcador específico. Está previsto poner a disposición de la comunidad científica tanto la herramienta de generación de atlas (Match-IT), como su plataforma de visualización (Atlas-IT), así como las bases de datos de expresión genética creadas a partir de estas herramientas. Por último, dentro de la presente Tesis Doctoral, se ha incluido una prueba conceptual innovadora que permite integrar los mencionados atlas de expresión genética tridimensionales dentro del linaje celular extraído de una adquisición in vivo de un embrión. Esta prueba conceptual abre la puerta a la posibilidad de correlar, por primera vez, las dinámicas espacio-temporales de genes y células.
Resumo:
La medicina ha evolucionado de forma que las imágenes digitales tienen un papel de gran relevancia para llevar a cabo el diagnóstico de enfermedades. Son muchos y de diversa naturaleza los problemas que pueden presentar el aparato fonador. Un paso previo para la caracterización de imágenes digitales de la laringe es la segmentación de las cuerdas vocales. Hasta el momento se han desarrollado algoritmos que permiten la segmentación de la glotis. El presente proyecto pretende avanzar un paso más en el estudio, procurando asimismo la segmentación de las cuerdas vocales. Para ello, es necesario aprovechar la información de color que ofrecen las imágenes, pues es lo que va a determinar la diferencia entre una región y otra de la imagen. En este proyecto se ha desarrollado un novedoso método de segmentación de imágenes en color estroboscópicas de la laringe basado en el crecimiento de regiones a partir de píxeles-semilla. Debido a los problemas que presentan las imágenes obtenidas por la técnica de la estroboscopia, para conseguir óptimos resultados de la segmentación es necesario someter a las imágenes a un preprocesado, que consiste en la eliminación de altos brillos y aplicación de un filtro de difusión anisotrópica. Tras el preprocesado, comienza el crecimiento de la región a partir de unas semillas que se obtienen previamente. La condición de inclusión de un píxel en la región se basa en un parámetro de tolerancia que se determina de forma adaptativa. Este parámetro comienza teniendo un valor muy bajo y va aumentando de forma recursiva hasta alcanzar una condición de parada. Esta condición se basa en el análisis de la distribución estadística de los píxeles dentro de la región que va creciendo. La última fase del proyecto consiste en la realización de las pruebas necesarias para verificar el funcionamiento del sistema diseñado, obteniéndose buenos resultados en la segmentación de la glotis y resultados esperanzadores para seguir mejorando el sistema para la segmentación de las cuerdas vocales. ABSTRACT Medicine has evolved so that digital images have a very important role to perform disease diagnosis. There are wide variety of problems that can present the vocal apparatus. A preliminary step for characterization of digital images of the larynx is the segmentation of the vocal folds. To date, some algorithms that allow the segmentation of the glottis have been developed. This project aims to go one step further in the study, also seeking the segmentation of the vocal folds. To do this, we must use the color information offered by images, since this is what will determine the difference between different regions in a picture. In this project a novel method of larynx color images segmentation based on region growing from a pixel seed is developed. Due to the problems of the images obtained by the technique of stroboscopy, to achieve optimal results of the segmentation is necessary a preprocessing of the images, which involves the removal of high brightness and applying an anisotropic diffusion filter. After this preprocessing, the growth of the region from previously obtained seeds starts. The condition for inclusion of a pixel in the region is based on a tolerance parameter, which is adaptively determined. It initially has a low value and this is recursively increased until a stop condition is reached. This condition is based on the analysis of the statistical distribution of the pixels within the grown region. The last phase of the project involves the necessary tests to verify the proper working of the designed system, obtaining very good results in the segmentation of the glottis and encouraging results to keep improving the system for the segmentation of the vocal folds.
Resumo:
A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence.
Resumo:
Many image processing methods, such as techniques for people re-identification, assume photometric constancy between different images. This study addresses the correction of photometric variations based upon changes in background areas to correct foreground areas. The authors assume a multiple light source model where all light sources can have different colours and will change over time. In training mode, the authors learn per-location relations between foreground and background colour intensities. In correction mode, the authors apply a double linear correction model based on learned relations. This double linear correction includes a dynamic local illumination correction mapping as well as an inter-camera mapping. The authors evaluate their illumination correction by computing the similarity between two images based on the earth mover's distance. The authors compare the results to a representative auto-exposure algorithm found in the recent literature plus a colour correction one based on the inverse-intensity chromaticity. Especially in complex scenarios the authors’ method outperforms these state-of-the-art algorithms.
Resumo:
Spotlighting is one illumination field where the application of light emitting diodes (LED) creates many advantages. Commonly, the system for spot lights consists of a LED light engine and collimating secondary optics. Through angular or spatial separated emitted light from the source and imaging optical elements, a non uniform far field appears with colored rings, dots or patterns. Many feasible combinations result in very different spatial color distributions. Several combinations of three multi-chip light sources and secondary optical elements like reflectors and TIR lenses with additional facets or scattering elements were analyzed mainly regarding the color uniformity. They are assessed by the merit function Usl which was derived from human factor experiments and describes the color uniformity based on the visual perception of humans. Furthermore, the optical systems are compared concerning efficiency, peak candela and aspect ratio. Both types of optics differ in the relation between the color uniformity level and other properties. A plain reflector with a slightly color mixing light source performs adequate. The results for the TIR lenses indicate that they need additional elements for good color mixing or blended light source. The most convenient system depends on the requirements of the application.