14 resultados para Chaotic behaviors
em Universidad Politécnica de Madrid
Resumo:
The derivative nonlinear Schrodinger DNLS equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model equal dampings of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase, no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space behavior occurs for left-hand LH polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than about unstable wave frequency 2/4 x ion cyclotron frequency. The structural stability of the transition was explored by going into a fully 3-wave model different dampings of daughter waves,four-dimensional flow; both models differ in significant phase-space features but keep common features essential for the transition.
Resumo:
Digital chaotic behavior in an optically processing element is reported. It is obtained as the result of processing two fixed trains of bits. The process is performed with an optically programmable logic gate, previously reported as a possible main block for optical computing. Outputs for some specific conditions of the circuit are given. Digital chaos is obtained using a feedback configuration. Period doublings in a Feigenbaum‐like scenario are obtained. A new method to characterize this type of digital chaos is reported.
Resumo:
In this paper an approach to the synchronization of chaotic circuits has been reported. It is based on an optically programmable logic cell and the signals involved are fully digital. It is based on the reception of the same input signal on sender and receiver and from this approach, with a posterior correlation between both outputs, an identical chaotic output is obtained in both systems. No conversion from analog to digital signals is needed. The model here presented is based on a computer simulation.
Resumo:
The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model (equal damping of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase), no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic dynamics that is absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralelling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable.
Resumo:
The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. No matter how small the growth rate of the unstable wave, the four-dimensional flow for the three wave amplitudes and a relative phase, with both resistive damping and linear Landau damping, exhibits chaotic relaxation oscillations that are absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable. The parameter domain developing chaos is much broader than the corresponding domain in a reduced 3-wave model that assumes equal dampings of the daughter waves
Resumo:
We study the dynamical states of a small-world network of recurrently coupled excitable neurons, through both numerical and analytical methods. The dynamics of this system depend mostly on both the number of long-range connections or ?shortcuts?, and the delay associated with neuronal interactions. We find that persistent activity emerges at low density of shortcuts, and that the system undergoes a transition to failure as their density reaches a critical value. The state of persistent activity below this transition consists of multiple stable periodic attractors, whose number increases at least as fast as the number of neurons in the network. At large shortcut density and for long enough delays the network dynamics exhibit exceedingly long chaotic transients, whose failure times follow a stretched exponential distribution. We show that this functional form arises for the ensemble-averaged activity if the failure time for each individual network realization is exponen- tially distributed
Resumo:
Digital chaotic behavior in an optically processing element is reported. It is obtained as the result of processing two fixed train of bits. The process is performed with an Optically Programmable Logic Gate. Possible outputs for some specific conditions of the circuit are given. These outputs have some fractal characteristics, when input variations are considered. Digital chaotic behavior is obtained by using a feedback configuration. A random-like bit generator is presented.
Resumo:
Protecting signals is one of the main tasks in information transmission. A large number of different methods have been employed since many centuries ago. Most of them have been based on the use of certain signal added to the original one. When the composed signal is received, if the added signal is known, the initial information may be obtained. The main problem is the type of masking signal employed. One possibility is the use of chaotic signals, but they have a first strong limitation: the need to synchronize emitter and receiver. Optical communications systems, based on chaotic signals, have been proposed in a large number of papers. Moreover, because most of the communication systems are digital and conventional chaos generators are analogue, a conversion analogue-digital is needed. In this paper we will report a new system where the digital chaos is obtained from an optically programmable logic structure. This structure has been employed by the authors in optical computing and some previous results in chaotic signals have been reported. The main advantage of this new system is that an analogue-digital conversion is not needed. Previous works by the authors employed Self-Electrooptical Effect Devices but in this case more conventional structures, as semiconductor laser amplifiers, have been employed. The way to analyze the characteristics of digital chaotic signals will be reported as well as the method to synchronize the chaos generators located in the emitter and in the receiver.
Resumo:
The main objective of this paper is to present some tools to analyze a digital chaotic signal. We have proposed some of them previously, as a new type of phase diagrams with binary signals converted to hexadecimal. Moreover, the main emphasis will be given in this paper to an analysis of the chaotic signal based on the Lempel and Ziv method. This technique has been employed partly by us to a very short stream of data. In this paper we will extend this method to long trains of data (larger than 2000 bit units). The main characteristics of the chaotic signal are obtained with this method being possible to present numerical values to indicate the properties of the chaos.
Resumo:
A chaotic output was obtained previously by us, from an Optical Programmable Logic Cell when a feedback is added. Some time delay is given to the feedback in order to obtain the non-linear behavior. The working conditions of such a cell is obtained from a simple diagram with fractal properties. We analyze its properties as well as the influence of time delay on the characteristics of the working diagram. A further study of the chaotic obtained signal is presented.
Resumo:
The type of signals obtained has conditioned chaos analysis tools. Almost in every case, they have analogue characteristics. But in certain cases, a chaotic digital signal is obtained and theses signals need a different approach than conventional analogue ones. The main objective of this paper will be to present some possible approaches to the study of this signals and how information about their characteristics may be obtained in the more straightforward possible way. We have obtained digital chaotic signals from an Optical Logic Cell with some feedback between output and one of the possible control gates. This chaos has been reported in several papers and its characteristics have been employed as a possible method to secure communications and as a way to encryption. In both cases, the influence of some perturbation in the transmission medium gave problems both for the synchronization of chaotic generators at emitter and receiver and for the recovering of information data. A proposed way to analyze the presence of some perturbation is to study the noise contents of transmitted signal and to implement a way to eliminate it. In our present case, the digital signal will be converted to a multilevel one by grouping bits in packets of 8 bits and applying conventional methods of time-frequency analysis to them. The results give information about the change in signals characteristics and hence some information about the noise or perturbations present. Equivalent representations to the phase and to the Feigenbaum diagrams for digital signals are employed in this case.
Resumo:
A new proposal to have secure communications in a system is reported. The basis is the use of a synchronized digital chaotic systems, sending the information signal added to an initial chaos. The received signal is analyzed by another chaos generator located at the receiver and, by a logic boolean function of the chaotic and the received signals, the original information is recovered. One of the most important facts of this system is that the bandwidth needed by the system remain the same with and without chaos.
Resumo:
We proposed an optical communications system, based on a digital chaotic signal where the synchronization of chaos was the main objective, in some previous papers. In this paper we will extend this work. A way to add the digital data signal to be transmitted onto the chaotic signal and its correct reception, is the main objective. We report some methods to study the main characteristics of the resulting signal. The main problem with any real system is the presence of some retard between the times than the signal is generated at the emitter at the time when this signal is received. Any system using chaotic signals as a method to encrypt need to have the same characteristics in emitter and receiver. It is because that, this control of time is needed. A method to control, in real time the chaotic signals, is reported.
Resumo:
The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations