11 resultados para Causal Tree Method

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

El objetivo principal es desarrollar la metodología de opciones reales para evaluar la posible puesta en marcha de un proyecto minero. Para esto, el proyecto se divide en dos partes: En la primera parte, con carácter teórico se analizan las inversiones desde el punto de vista tradicional, comparando la problemática de estas valoraciones en ambientes de incertidumbre y flexibilidad operativa. Se analizan las opciones financieras y se comparan con las opciones reales, en cuanto a similitudes y problemáticas. Se desarrollan también los procesos estocásticos que afectan a las variables del proyecto de inversión. Se explican además, las metodologías para el cálculo de las opciones reales, incluido el cálculo de la volatilidad de las mismas. En una segunda parte, se estudia el yacimiento aurífero de Corcoesto, para el cual se realiza la simulación del plan de negocio según las características necesarias para la explotación, donde los ingresos se modelizan mediante un movimiento geométrico browniano para simular el comportamiento del precio de la onza de oro. Se elige un desarrollo de árboles binomiales para estimar el valor futuro del proyecto, a la vez que se establece un intervalo de precios de la opción para adquirir el proyecto minero. Este intervalo estará determinado por las incertidumbres del proyecto calculadas según las metodologías de Copeland y Antikarov, y Heraht y Park. Abstract This project is aimed mainly to develop real options theory to assess a mining project start-up. The project is divided in two documents: The first document with theorical content, investments are analyzed from the clasical point of view, comparing the advantages and disadvantages of this appraisal in high uncertainity and operational flexibility conditions. Financial options are analyzed and compared to real options, in both similarities and problematics. Stochastical process that affect the project variables are also developed. Methods for estimating real options value, including the methods for volatility estimation are commented. In the second document, the Corcoesto gold deposit has been studied. A bussines plan simulation has been maked according to the characteristics of the extraction, where incomes have been simulated with a geometrical Brownian movement to estimate the gold onze behaviour. The binomial tree method has been generated to study the future project value, as well as a range of option prices, for adquiring the mine project. This interval is determined by the project uncertainity calculated with the theories from Copeland and Antikarov and Herath and Park

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Researchers in ecology commonly use multivariate analyses (e.g. redundancy analysis, canonical correspondence analysis, Mantel correlation, multivariate analysis of variance) to interpret patterns in biological data and relate these patterns to environmental predictors. There has been, however, little recognition of the errors associated with biological data and the influence that these may have on predictions derived from ecological hypotheses. We present a permutational method that assesses the effects of taxonomic uncertainty on the multivariate analyses typically used in the analysis of ecological data. The procedure is based on iterative randomizations that randomly re-assign non identified species in each site to any of the other species found in the remaining sites. After each re-assignment of species identities, the multivariate method at stake is run and a parameter of interest is calculated. Consequently, one can estimate a range of plausible values for the parameter of interest under different scenarios of re-assigned species identities. We demonstrate the use of our approach in the calculation of two parameters with an example involving tropical tree species from western Amazonia: 1) the Mantel correlation between compositional similarity and environmental distances between pairs of sites, and; 2) the variance explained by environmental predictors in redundancy analysis (RDA). We also investigated the effects of increasing taxonomic uncertainty (i.e. number of unidentified species), and the taxonomic resolution at which morphospecies are determined (genus-resolution, family-resolution, or fully undetermined species) on the uncertainty range of these parameters. To achieve this, we performed simulations on a tree dataset from southern Mexico by randomly selecting a portion of the species contained in the dataset and classifying them as unidentified at each level of decreasing taxonomic resolution. An analysis of covariance showed that both taxonomic uncertainty and resolution significantly influence the uncertainty range of the resulting parameters. Increasing taxonomic uncertainty expands our uncertainty of the parameters estimated both in the Mantel test and RDA. The effects of increasing taxonomic resolution, however, are not as evident. The method presented in this study improves the traditional approaches to study compositional change in ecological communities by accounting for some of the uncertainty inherent to biological data. We hope that this approach can be routinely used to estimate any parameter of interest obtained from compositional data tables when faced with taxonomic uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a systematic method for the generation and treatment of the alarms' graphs, being its final object to find the Alarm Root Cause of the Massive Alarms that are produced in the dispatching centers. Although many works about this matter have been already developed, the problem about the alarm management in the industry is still completely unsolved. In this paper, a simple statistic analysis of the historical data base is conducted. The results obtained by the acquisition alarm systems, are used to generate a directed graph from which the more significant alarms are extracted, previously analyzing any possible case in which a great quantity of alarms are produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonparametric belief propagation (NBP) is a well-known particle-based method for distributed inference in wireless networks. NBP has a large number of applications, including cooperative localization. However, in loopy networks NBP suffers from similar problems as standard BP, such as over-confident beliefs and possible nonconvergence. Tree-reweighted NBP (TRW-NBP) can mitigate these problems, but does not easily lead to a distributed implementation due to the non-local nature of the required so-called edge appearance probabilities. In this paper, we propose a variation of TRWNBP, suitable for cooperative localization in wireless networks. Our algorithm uses a fixed edge appearance probability for every edge, and can outperform standard NBP in dense wireless networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direct application of existing models for seed germination may often be inadequate in the context of ecology and forestry germination experiments. This is because basic model assumptions are violated and variables available to forest managers are rarely used. In this paper, we present a method which addresses the aforementioned shortcomings. The approach is illustrated through a case study of Pinus pinea L. Our findings will also shed light on the role of germination in the general failure of natural regeneration in managed forests of this species. The presented technique consists of a mixed regression model based on survival analysis. Climate and stand covariates were tested. Data for fitting the model were gathered from a 5-year germination experiment in a mature, managed P. pinea stand in the Northern Plateau of Spain in which two different stand densities can be found. The model predictions proved to be unbiased and highly accurate when compared with the training data. Germination in P. pinea was controlled through thermal variables at stand level. At microsite level, low densities negatively affected the probability of germination. A time-lag in the response was also detected. Overall, the proposed technique provides a reliable alternative to germination modelling in ecology/forestry studies by using accessible/ suitable variables. The P. pinea case study highlights the importance of producing unbiased predictions. In this species, the occurrence and timing of germination suggest a very different regeneration strategy from that understood by forest managers until now, which may explain the high failure rate of natural regeneration in managed stands. In addition, these findings provide valuable information for the management of P. pinea under climate-change conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Old-growth trees play a very important role in the maintenance of biodiversity in forests. However, no clear definition is yet available to help identify them since tree age is usually not recorded in National Forest Inventories. To develop and test a new method to identify old-growth trees using a species-specific threshold for tree diameter in National Forest Inventories. Different nonlinear mixed models for diameter ? age were generated using data from the Spanish Forest Inventory in order to identify the most appropriate one for Aleppo pine in its South-western distribution area. The asymptote of the optimal model indicates the threshold diameter for defining an old-growth tree. Additionally, five site index curves were examined to analyze the influence of site quality on these models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the biggest challenges that software developers face is to make an accurate estimate of the project effort. Radial basis function neural networks have been used to software effort estimation in this work using NASA dataset. This paper evaluates and compares radial basis function versus a regression model. The results show that radial basis function neural network have obtained less Mean Square Error than the regression method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shopfloor Management (SM) empowerment methodologies have traditionally focused on two aspects: goal achievement following rigid structures, such as SQDCME, or evolutional aspects of empowerment factors away from strategic goal achievement. Furthermore, SM Methodologies have been organized almost solely around the hierarchical structure of the organization, failing systematically to cope with the challenges that Industry 4.0 is facing. The latter include the growing complexity of value-stream networks, sustainable empowerment of the workforce (Learning Factory), an autonomous and intelligent process management (Smart Factory), the need to cope with the increasing complexity of value-stream networks (VSN) and the leadership paradigm shift to strategic alignment. This paper presents a novel Lean SM Method (LSM) called ?HOSHIN KANRI Tree? (HKT), which is based on standardization of the communication patterns among process owners (POs) by PDCA. The standardization of communication patterns by HKT technology should bring enormous benefits in value stream (VS) performance, speed of standardization and learning rates to the Industry 4.0 generation of organizations. These potential advantages of HKT are being tested at present in worldwide research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vector reconstruction of objects from an unstructured point cloud obtained with a LiDAR-based system (light detection and ranging) is one of the most promising methods to build three dimensional models of orchards. The cylinder fitting method for woody structure reconstruction of leafless trees from point clouds obtained with a mobile terrestrial laser scanner (MTLS) has been analysed. The advantage of this method is that it performs reconstruction in a single step. The most time consuming part of the algorithm is generation of the cylinder direction, which must be recalculated at the inclusion of each point in the cylinder. The tree skeleton is obtained at the same time as the cluster of cylinders is formed. The method does not guarantee a unique convergence and the reconstruction parameter values must be carefully chosen. A balanced processing of clusters has also been defined which has proven to be very efficient in terms of processing time by following the hierarchy of branches, predecessors and successors. The algorithm was applied to simulated MTLS of virtual orchard models and to MTLS data of real orchards. The constraints applied in the method have been reviewed to ensure better convergence and simpler use of parameters. The results obtained show a correct reconstruction of the woody structure of the trees and the algorithm runs in linear logarithmic time