26 resultados para CONFORMAL-INVARIANCE
em Universidad Politécnica de Madrid
Resumo:
A method to analyze parabolic reflectors with arbitrary piecewise rim is presented in this communication. This kind of reflectors, when operating as collimators in compact range facilities, needs to be large in terms of wavelength. Their analysis is very inefficient, when it is carried out with fullwave/MoM techniques, and it is not very appropriate for designing with PO techniques. Also, fast GO formulations do not offer enough accuracy to reach performance results. The proposed algorithm is based on a GO-PWS hybrid scheme, using analytical as well as non-analytical formulations. On one side, an analytical treatment of the polygonal rim reflectors is carried out. On the other side, non-analytical calculi are based on efficient operations, such as M2 order 2-dimensional FFT. A combination of these two techniques in the algorithm ensures real ad-hoc design capabilities, reached through analysis speedup. The purpose of the algorithm is to obtain an optimal conformal serrated-edge reflector design through the analysis of the field quality within the quiet zone that it is able to generate in its forward half space.
Resumo:
The GEODA-GRUA is one conformal adaptive antenna array designed for satellite communications. Operating at 1.7 GHz with circular polarization, it is possible to track and communicate with several satellites at once being able to receive signals in full azimuth and within the range of 5° to broadside elevation thanks to its adaptive beam. The complex structure of the antenna array has 2700 radiating elements based on a set of 60 similar triangular arrays that are divided in 15 subarrays of 3 radiating elements. A control module governs each transmission/receiver (T/R) module associated to each cell in order to manage beam steering by shifting phases.
Resumo:
The Fractal Image Informatics toolbox (Oleschko et al., 2008 a; Torres-Argüelles et al., 2010) was applied to extract, classify and model the topological structure and dynamics of surface roughness in two highly eroded catchments of Mexico. Both areas are affected by gully erosion (Sidorchuk, 2005) and characterized by avalanche-like matter transport. Five contrasting morphological patterns were distinguished across the slope of the bare eroded surface of Faeozem (Queretaro State) while only one (apparently independent on the slope) roughness pattern was documented for Andosol (Michoacan State). We called these patterns ?the roughness clusters? and compared them in terms of metrizability, continuity, compactness, topological connectedness (global and local) and invariance, separability, and degree of ramification (Weyl, 1937). All mentioned topological measurands were correlated with the variance, skewness and kurtosis of the gray-level distribution of digital images. The morphology0 spatial dynamics of roughness clusters was measured and mapped with high precision in terms of fractal descriptors. The Hurst exponent was especially suitable to distinguish between the structure of ?turtle shell? and ?ramification? patterns (sediment producing zone A of the slope); as well as ?honeycomb? (sediment transport zone B) and ?dinosaur steps? and ?corals? (sediment deposition zone C) roughness clusters. Some other structural attributes of studied patterns were also statistically different and correlated with the variance, skewness and kurtosis of gray distribution of multiscale digital images. The scale invariance of classified roughness patterns was documented inside the range of five image resolutions. We conjectured that the geometrization of erosion patterns in terms of roughness clustering might benefit the most semi-quantitative models developed for erosion and sediment yield assessments (de Vente and Poesen, 2005).
Resumo:
This paper presents a technique for achieving a class of optimizations related to the reduction of checks within cycles. The technique uses both Program Transformation and Abstract Interpretation. After a ñrst pass of an abstract interpreter which detects simple invariants, program transformation is used to build a hypothetical situation that simpliñes some predicates that should be executed within the cycle. This transformation implements the heuristic hypothesis that once conditional tests hold they may continué doing so recursively. Specialized versions of predicates are generated to detect and exploit those cases in which the invariance may hold. Abstract interpretation is then used again to verify the truth of such hypotheses and conñrm the proposed simpliñcation. This allows optimizations that go beyond those possible with only one pass of the abstract interpreter over the original program, as is normally the case. It also allows selective program specialization using a standard abstract interpreter not speciñcally designed for this purpose, thus simplifying the design of this already complex module of the compiler. In the paper, a class of programs amenable to such optimization is presented, along with some examples and an evaluation of the proposed techniques in some application áreas such as floundering detection and reducing run-time tests in automatic logic program parallelization. The analysis of the examples presented has been performed automatically by an implementation of the technique using existing abstract interpretation and program transformation tools.
Resumo:
The solutions studied were Plant Vitrification Solutions 1, 2 and 3: (PVS1: Uragami et al. 1989, Plant Cell Rep. 8, 418; PVS2: Sakai et al. 1990, Plant Cell Rep. 9, 30; PVS3: Nishizawa et al. 1993, Plant Sci. 91, 67). Cooling was performed using the calorimeter control (5, 10 and 20°C min-1), or for higher rates, by quenching the closed pan with PVS in LN, either naked (faster - 5580°C min-1) or introduced in cryovials (reduced rate 360°C min-1). Quenched pans were then transferred to the sample chamber, pre-cooled to -196°C. Glass transition temperature was observed by DSC with a TA 2920 instrument, upon warming pans with solution samples from -145°C to room temperature, at standard warming rate10°C min-1.
Resumo:
We present a non-conformal metric that generalizes the geodesic active contours approach for image segmentation. The new metric is obtained by adding to the Euclidean metric an additional term that penalizes the misalignment of the curve with the image gradient and multiplying the resulting metric by a conformal factor that depends on the edge intensity. In this way, a closer fitting to the edge direction results. The provided experimental results address the computation of the geodesics of the new metric by applying a gradient descent to externally provided curves. The good performance of the proposed techniques is demonstrated in comparison with other active contours methods.
Resumo:
Nowadays, more a more base stations are equipped with active conformal antennas. These antenna designs combine phase shift systems with multibeam networks providing multi-beam ability and interference rejection, which optimize multiple channel systems. GEODA is a conformal adaptive antenna system designed for satellite communications. Operating at 1.7 GHz with circular polarization, it is possible to track and communicate with several satellites at once thanks to its adaptive beam. The antenna is based on a set of similar triangular arrays that are divided in subarrays of three elements called `cells'. Transmission/Receiver (T/R) modules manage beam steering by shifting the phases. A more accurate steering of the antenna GEODA could be achieved by using a multibeam network. Several multibeam network designs based on Butler network will be presented
Resumo:
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4−2 ɛ of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's −5/3 law is, thus, recovered for ɛ=2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the −5/3 law emerges in the presence of a saturation in the ɛ dependence of the scaling dimension of the eddy diffusivity at ɛ=3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.
Resumo:
Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples.
Resumo:
By spectral analysis, and using joint time-frequency representations, we present the theoretical basis to design invariant bandlimited Airy pulses with an arbitrary degree of robustness and an arbitrary range of single-mode fiber chromatic dispersion. The numerically simulated examples confirm the theoretically predicted pulse partial invariance in the propagation of the pulse in the fiber.
Resumo:
Con esta tesis ”Desarrollo de una Teoría Uniforme de la Difracción para el Análisis de los Campos Electromagnéticos Dispersados y Superficiales sobre un Cilindro” hemos iniciado una nueva línea de investigación que trata de responder a la siguiente pregunta: ¿cuál es la impedancia de superficie que describe una estructura de conductor eléctrico perfecto (PEC) convexa recubierta por un material no conductor? Este tipo de estudios tienen interés hoy en día porque ayudan a predecir el campo electromagnético incidente, radiado o que se propaga sobre estructuras metálicas y localmente convexas que se encuentran recubiertas de algún material dieléctrico, o sobre estructuras metálicas con pérdidas, como por ejemplo se necesita en determinadas aplicaciones aeroespaciales, marítimas o automovilísticas. Además, desde un punto de vista teórico, la caracterización de la impedancia de superficie de una estructura PEC recubierta o no por un dieléctrico es una generalización de varias soluciones que tratan ambos tipos de problemas por separado. En esta tesis se desarrolla una teoría uniforme de la difracción (UTD) para analizar el problema canónico del campo electromagnético dispersado y superficial en un cilindro circular eléctricamente grande con una condición de contorno de impedancia (IBC) para frecuencias altas. Construir una solución basada en UTD para este problema canónico es crucial en el desarrollo de un método UTD para el caso más general de una superficie arbitrariamente convexa, mediante el uso del principio de localización de los campos electromagnéticos a altas frecuencias. Esta tesis doctoral se ha llevado a cabo a través de una serie de hitos que se enumeran a continuación, enfatizando las contribuciones a las que ha dado lugar. Inicialmente se realiza una revisión en profundidad del estado del arte de los métodos asintóticos con numerosas referencias. As í, cualquier lector novel puede llegar a conocer la historia de la óptica geométrica (GO) y la teoría geométrica de la difracción (GTD), que dieron lugar al desarrollo de la UTD. Después, se investiga ampliamente la UTD y los trabajos más importantes que pueden encontrarse en la literatura. As í, este capítulo, nos coloca en la posición de afirmar que, hasta donde nosotros conocemos, nadie ha intentado antes llevar a cabo una investigación rigurosa sobre la caracterización de la impedancia de superficie de una estructura PEC recubierta por un material dieléctrico, utilizando para ello la UTD. Primero, se desarrolla una UTD para el problema canónico de la dispersión electromagnética de un cilindro circular eléctricamente grande con una IBC uniforme, cuando es iluminado por una onda plana con incidencia oblicua a frecuencias altas. La solución a este problema canónico se construye a partir de una solución exacta mediante una expansión de autofunciones de propagación radial. Entonces, ésta se convierte en una nueva expansión de autofunciones de propagación circunferencial muy apropiada para cilindros grandes, a través de la transformación de Watson. De esta forma, la expresión del campo se reduce a una integral que se evalúa asintóticamente, para altas frecuencias, de manera uniforme. El resultado se expresa según el trazado de rayos descrito en la UTD. La solución es uniforme porque tiene la importante propiedad de mantenerse continua a lo largo de la región de transición, a ambos lados de la superficie del contorno de sombra. Fuera de la región de transición la solución se reduce al campo incidente y reflejado puramente ópticos en la región iluminada del cilindro, y al campo superficial difractado en la región de sombra. Debido a la IBC el campo dispersado contiene una componente contrapolar a causa de un acoplamiento entre las ondas TEz y TMz (donde z es el eje del cilindro). Esta componente contrapolar desaparece cuando la incidencia es normal al cilindro, y también en la región iluminada cuando la incidencia es oblicua donde el campo se reduce a la solución de GO. La solución UTD presenta una muy buena exactitud cuando se compara numéricamente con una solución de referencia exacta. A continuación, se desarrolla una IBC efectiva para el cálculo del campo electromagnético dispersado en un cilindro circular PEC recubierto por un dieléctrico e iluminado por una onda plana incidiendo oblicuamente. Para ello se derivan dos impedancias de superficie en relación directa con las ondas creeping y de superficie TM y TE que se excitan en un cilindro recubierto por un material no conductor. Las impedancias de superficie TM y TE están acopladas cuando la incidencia es oblicua, y dependen de la geometría del problema y de los números de onda. Además, se ha derivado una impedancia de superficie constante, aunque con diferente valor cuando el observador se encuentra en la zona iluminada o en la zona de sombra. Después, se presenta una solución UTD para el cálculo de la dispersión de una onda plana con incidencia oblicua sobre un cilindro eléctricamente grande y convexo, mediante la generalización del problema canónico correspondiente al cilindro circular. La solución asintótica es uniforme porque se mantiene continua a lo largo de la región de transición, en las inmediaciones del contorno de sombra, y se reduce a la solución de rayos ópticos en la zona iluminada y a la contribución de las ondas de superficie dentro de la zona de sombra, lejos de la región de transición. Cuando se usa cualquier material no conductor se excita una componente contrapolar que tiende a desaparecer cuando la incidencia es normal al cilindro y en la región iluminada. Se discuten ampliamente las limitaciones de las fórmulas para la impedancia de superficie efectiva, y se compara la solución UTD con otras soluciones de referencia, donde se observa una muy buena concordancia. Y en tercer lugar, se presenta una aproximación para una impedancia de superficie efectiva para el cálculo de los campos superficiales en un cilindro circular conductor recubierto por un dieléctrico. Se discuten las principales diferencias que existen entre un cilindro PEC recubierto por un dieléctrico desde un punto de vista riguroso y un cilindro con una IBC. Mientras para un cilindro de impedancia se considera una impedancia de superficie constante o uniforme, para un cilindro conductor recubierto por un dieléctrico se derivan dos impedancias de superficie. Estas impedancias de superficie están asociadas a los modos de ondas creeping TM y TE excitadas en un cilindro, y dependen de la posición y de la orientación del observador y de la fuente. Con esto en mente, se deriva una solución UTD con IBC para los campos superficiales teniendo en cuenta las dependencias de la impedancia de superficie. La expansión asintótica se realiza, mediante la transformación de Watson, sobre la representación en serie de las funciones de Green correspondientes, evitando as í calcular las derivadas de orden superior de las integrales de tipo Fock, y dando lugar a una solución rápida y precisa. En los ejemplos numéricos realizados se observa una muy buena precisión cuando el cilindro y la separación entre el observador y la fuente son grandes. Esta solución, junto con el método de los momentos (MoM), se puede aplicar para el cálculo eficiente del acoplamiento mutuo de grandes arrays conformados de antenas de parches. Los métodos propuestos basados en UTD para el cálculo del campo electromagnético dispersado y superficial sobre un cilindro PEC recubierto de dieléctrico con una IBC efectiva suponen un primer paso hacia la generalización de una solución UTD para superficies metálicas convexas arbitrarias cubiertas por un material no conductor e iluminadas por una fuente electromagnética arbitraria. ABSTRACT With this thesis ”Development of a Uniform Theory of Diffraction for Scattered and Surface Electromagnetic Field Analysis on a Cylinder” we have initiated a line of investigation whose goal is to answer the following question: what is the surface impedance which describes a perfect electric conductor (PEC) convex structure covered by a material coating? These studies are of current and future interest for predicting the electromagnetic (EM) fields incident, radiating or propagating on locally smooth convex parts of highly metallic structures with a material coating, or by a lossy metallic surfaces, as for example in aerospace, maritime and automotive applications. Moreover, from a theoretical point of view, the surface impedance characterization of PEC surfaces with or without a material coating represents a generalization of independent solutions for both type of problems. A uniform geometrical theory of diffraction (UTD) is developed in this thesis for analyzing the canonical problem of EM scattered and surface field by an electrically large circular cylinder with an impedance boundary condition (IBC) in the high frequency regime, by means of a surface impedance characterization. The construction of a UTD solution for this canonical problem is crucial for the development of the corresponding UTD solution for the more general case of an arbitrary smooth convex surface, via the principle of the localization of high frequency EM fields. The development of the present doctoral thesis has been carried out through a series of landmarks that are enumerated as follows, emphasizing the main contributions that this work has given rise to. Initially, a profound revision is made in the state of art of asymptotic methods where numerous references are given. Thus, any reader may know the history of geometrical optics (GO) and geometrical theory of diffraction (GTD), which led to the development of UTD. Then, the UTD is deeply investigated and the main studies which are found in the literature are shown. This chapter situates us in the position to state that, as far as we know, nobody has attempted before to perform a rigorous research about the surface impedance characterization for material-coated PEC convex structures via UTD. First, a UTD solution is developed for the canonical problem of the EM scattering by an electrically large circular cylinder with a uniform IBC, when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transformation, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the GO or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution. Then, an effective IBC is developed for the EM scattered field on a coated PEC circular cylinder illuminated by an obliquely incident plane wave. Two surface impedances are derived in a direct relation with the TM and TE surface and creeping wave modes excited on a coated cylinder. The TM and TE surface impedances are coupled at oblique incidence, and depend on the geometry of the problem and the wave numbers. Nevertheless, a constant surface impedance is found, although with a different value when the observation point lays in the lit or in the shadow region. Then, a UTD solution for the scattering of an obliquely incident plane wave on an electrically large smooth convex coated PEC cylinder is introduced, via a generalization of the canonical circular cylinder problem. The asymptotic solution is uniform because it remains continuous across the transition region, in the vicinity of the shadow boundary, and it recovers the ray optical solution in the deep lit region and the creeping wave formulation within the deep shadow region. When a coating is present a cross-polar field term is excited, which vanishes at normal incidence and in the deep lit region. The limitations of the effective surface impedance formulas are discussed, and the UTD solution is compared with some reference solutions where a very good agreement is met. And in third place, an effective surface impedance approach is introduced for determining surface fields on an electrically large coated metallic circular cylinder. Differences in analysis of rigorouslytreated coated metallic cylinders and cylinders with an IBC are discussed. While for the impedance cylinder case a single constant or uniform surface impedance is considered, for the coated metallic cylinder case two surface impedances are derived. These are associated with the TM and TE creeping wave modes excited on a cylinder and depend on observation and source positions and orientations. With this in mind, a UTD based method with IBC is derived for the surface fields by taking into account the surface impedance variation. The asymptotic expansion is performed, via the Watson transformation, over the appropriate series representation of the Green’s functions, thus avoiding higher-order derivatives of Fock-type integrals, and yielding a fast and an accurate solution. Numerical examples reveal a very good accuracy for large cylinders when the separation between the observation and the source point is large. Thus, this solution could be efficiently applied in mutual coupling analysis, along with the method of moments (MoM), of large conformal microstrip array antennas. The proposed UTD methods for scattered and surface EM field analysis on a coated PEC cylinder with an effective IBC are considered the first steps toward the generalization of a UTD solution for large arbitrarily convex smooth metallic surfaces covered by a material coating and illuminated by an arbitrary EM source.
Resumo:
Los años cincuenta y sesenta son los años de la incorporación definitiva de la arquitectura española al panorama internacional. Entre los arquitectos que protagonizan ese salto sin retorno, se encuentra el grupo de aquellos que unos años más tarde serán denominados por Juan Daniel Fullaondo como Escuela de Madrid. Carlos Flores, en su libro Arquitectura Española Contemporánea 1880-1950, se refiere a esos arquitectos como aquellos que se aplicaban a la difícil tarea de restablecer en España un tipo de arquitectura que conectaba con las teorías, soluciones y lenguajes establecidos por Europa durante las primeras décadas del siglo XX. Sigfried Giedion plantea en Espacio, Tiempo y Arquitectura el origen de una nueva tradición, surgida a partir de la revolución óptica de principios de siglo. Con tradición se refiere a una nueva cultura, que abarca la interrelación de las diferentes actividades del hombre: la similitud de los métodos que se usan en la arquitectura, la construcción, la pintura, el urbanismo o la ciencia. Esa novedad, fundamentada en su independencia y desvinculación con el periodo anterior, se inscribe dentro del esquema evolutivo que Thomas Kuhn plantea en su texto La Estructura de la Revoluciones Científicas, conforme a periodos no acumulativos. Kuhn habla del surgimiento de anomalías en cada periodo, origen de las crisis de pensamiento cuya explicación precisará un necesario cambio paradigmático. En la ciencia, en el campo de la óptica Thomas Young demuestra a principios del siglo XIX la naturaleza ondulatoria de la luz con su experimento de doble rendija; en el electromagnetismo se produce el salto conceptual que supone la postulación de la existencia del campo eléctrico por parte de Michael Faraday, y en termodinámica la consideración apuntada por Planck de que la radiación de la energía de produce de forma discreta, a través de cuantos. En las artes plásticas, paralelamente, Gleizes y Metzinger, en su recopilación de logros cubistas recogida en Sobre el Cubismo, hablan de la evolución sufrida durante el siglo XIX por la pintura: desde el idealismo de principios de siglo, para pasando por el realismo y la representación impresionista de la realidad, concluir prescindiendo de la perspectiva clásica. También la matemática, una vez desarrolladas por Gauss o Lobachevsky y Bolyai geometrías coherentes que incumplen el quinto postulado de Euclides, terminará dando validez a través de Riemann a los espacios ambiente en los que habitan dichas geometrías, desvinculando la relación directa entre espacio geométrico –el espacio ambiente al que da lugar un tipo de geometría- y el espacio físico. Capi Corrales refleja en su libro Contando el Espacio, cómo hasta la teoría de la relatividad y el cubismo, las geometrías no euclídeas no se hicieron notorias también fuera del campo de las matemáticas. El origen de la nueva tradición con la que Giedion se refiere a la nueva cultura de la modernidad coincide con los saltos paradigmáticos que suponen la teoría de la relatividad en las ciencias y el cubismo en las artes plásticas. Ambas se prolongan durante las primeras décadas hasta la teoría cuántica y la abstracción absoluta, barreras que los dos principales precursores de la relatividad y el cubismo, Einstein y Picasso, nunca llegan a franquear. En ese sentido Giedion habla también, además del origen, de su desarrollo, e incorpora las aportaciones periféricas en la arquitectura de Brasil, Japón o Finlandia, incluyendo por tanto la revisión orgánica propugnada por Zevi como parte de esa nueva tradición, quedando abierta a la incorporación tardía de nuevas aportaciones al desarrollo de esa cultura de la modernidad. Eliminado el concepto de la estética trascendental de Kant del tiempo como una referencia absoluta, y asumido el valor constante de la velocidad de la luz, para la teoría de la relatividad no existe una simultaneidad auténtica. Queda así fijada la velocidad de la luz como uno de los límites del universo, y la equivalencia entre masa y energía. En el cubismo la simultaneidad espacial viene motivada por la eliminación del punto de vista preferente, cuyo resultado es la multiplicidad descriptiva de la realidad, que se visualiza en la descomposición en planos, tanto del objeto como del espacio, y la consecuente continuidad entre fondo y figura que en arquitectura se refleja en la continuidad entre edificio y territorio. Sin la consideración de un punto de vista absoluto, no existe una forma auténtica. El cubismo, y su posterior desarrollo por las vanguardias plásticas, hacen uso de la geometría como mecanismo de recomposición de la figura y el espacio, adoptando mecanismos de penetración, superposición y transparencia. Gyorgy Kepes indica en El Lenguaje de la Visión que la descomposición cubista del objeto implica la sucesiva autonomía de los planos, hasta convertirse en elementos constituyentes. Algo que refleja las axonometrías arquitectónicas de Van Doesburg y que culmina con los espacios propuestos por Mies van der Rohe en sus primeros proyectos europeos. Estos mecanismos, encuentran eco en los primeros planteamientos de Javier Carvajal: en la ampliación del Panteón de españoles del cementerio de Campo Verano, un recinto virtual reconstruido mentalmente a partir del uso de tres únicos planos; o en el Pabellón de Nueva York, que organiza su planta baja desde el recorrido, introduciendo el parámetro temporal como una dimensión más. Al uso diferenciado del plano como elemento constituyente, Carvajal incorpora su plegado y su disposición conformando envolventes como mecanismo de cualificación espacial y formal, potenciando la prolongación entre arquitectura y territorio. Una continuidad que quedará culminada en las dos viviendas unifamiliares construidas en Somosaguas. La descomposición volumétrica conduce a unos niveles de abstracción que hace precisa la incorporación de elementos de la memoria -fuentes, patios, celosías…- a modo de red de señales, como las que Picasso y Braque introducen en sus cuadros para permitir su interpretación. Braque insiste en el interés por el espacio que rodea a los objetos. Una búsqueda de la tactilidad del espacio contraria a la perspectiva que aleja el objeto del observador, y que en los jardines de las viviendas de Somosaguas parece emanar de su propia materialidad. Un espacio táctil alejado del espacio geométrico y que Braque identifica con el espacio representativo en el que Poincaré, en La Ciencia y la Hipótesis, ubica nuestras sensaciones. Desdibujar los límites del objeto prolonga el espacio indefinidamente. Con el paso en el arte griego del mito al logos, se abre paso a la matemática como herramienta de comprensión de la naturaleza hasta el siglo XIX. Leon Lederman, en Simetría y la Belleza del Universo, apunta a que una de las mayores contribuciones de la teoría de Einstein es hacer cambiar el modo de pensar la naturaleza, orientándolo hacia la búsqueda de los principios de simetría que subyacen bajo las leyes físicas. Considerando que la simetría es la invariancia de un objeto o un sistema frente a una transformación y que las leyes físicas son las mismas en cualquier punto del espacio, el espacio de nuestro universo posee una simetría traslacional continua. En la ocupación del espacio de las primeras propuestas de Corrales y Molezún aparecen estructuras subyacentes que responden a enlosetados: paralelogramos sometidos a transformaciones continuas, que la naturaleza identifica tridimensionalmente con los grupos cristalográficos. Las plantas del museo de Arte Contemporáneo de la Castellana, la residencia de Miraflores, el pabellón de Bruselas o la torre Peugeot pertenecen a este grupo. La arquitectura como proceso de ocupación continua del territorio y de su trasposición al plano de cubierta, se materializa en líneas estructurales coincidentes con la estructura matemática de sus simetrías de traslación cuya posibilidad de prolongación infinita queda potenciada por el uso de la envolvente transparente. Junto a esta transparencia literal, inherente al material, Colin Rowe y Robert Slutzky nos alertan sobre otra transparencia inherente a la estructura: la transparencia fenomenal, ilustrada por los cuadros de Juan Gris, y cuya intuición aparece reflejada en la casa Huarte en Puerta de Hierro de Madrid. Corrales y Molezún insisten en una lectura de su volumetría alejada de la frontalidad, en la que los contornos de sus cubiertas inclinadas y las visuales tangenciales sugeridas por la organización de sus recorridos introducen una estructura diagonal que se superpone al entendimiento ortogonal de su planta, dibujando una intrincada red de líneas quebradas que permiten al espacio fluctuar entre las secuencia volumétrica propuesta. Los datos relativos al contenido energético de la luz y el concepto de átomo parten de la consideración de la emisión de energía en cuantos realizada por Planck, y concluyen con una circunstancia paradójica: la doble naturaleza de la luz -demostrada por la explicación de Einstein del efecto fotoeléctrico- y la doble naturaleza de la materia -asumida por Bohr y demostrada por el efecto Compton-. Schrödinger y Heisenberg formularán finalmente la ecuación universal del movimiento que rige en las ondas de materia, y cuya representación matemática es lo que se conoce como función de onda. El objeto es así identificado con su función de onda. Su ondulatoriedad expresará la probabilidad de encontrarse en un lugar determinado. Gyorgy Kepes subraya la necesidad de simplificar el lenguaje para pasar de la objetividad que aún permanece en la pintura cubista a la abstracción total del espacio. Y es así como los artistas plásticos reducen los objetos a simples formas geométricas, haciendo aflorar a la vez, las fuerzas plásticas que los tensionan o equilibran, en un proceso que acaba por eliminar cualquier atisbo de materia. Robert Rosenblum en La Pintura Moderna y la Tradición del Romanticismo Nórdico habla de cómo ese rechazo de la materia en favor de un vacío casi impalpable, campos luminosos de color denso que difunden un sereno resplandor y parecen engendrar las energías elementales de la luz natural, está directamente vinculado a la relación con la naturaleza que establece el romanticismo nórdico. La expresión de la energía de la naturaleza concentrada en un vacío que ya había sido motivo de reflexión para Michael Faraday en su postulación del concepto de campo eléctrico. Sáenz de Oíza incide en la expresión de la condición material de la energía en su propuesta junto a José Luis Romany para la capilla en el Camino de Santiago. La evocación de diferentes fuerzas electromagnéticas, las únicas junto a las gravitatorias susceptibles de ser experimentadas por el hombre, aparecerán visualizadas también en el carácter emergente de algunas de sus obras: el Santuario de Aránzazu o Torres Blancas; pero también en la naturaleza fluyente de sus contornos, la dispersión perimetral de los espacios -el umbral como centro del universoo la configuración del límite como respuesta a las tensiones germinales de la naturaleza. Miguel Fisac, a la vuelta de su viaje a los países nórdicos, aborda una simplificación lingüística orientada hacia la adecuación funcional de los espacios. En el Instituto de Daimiel, el Instituto de formación del profesorado o los complejos para los Padres Dominicos en Valladolid o Alcobendas, organiza progresivamente la arquitectura en diferentes volúmenes funcionales, incidiendo de un modo paralelo en la manifestación de los vínculos que se establecen entre dichos volúmenes como una visualización de las fuerzas que los tensionan y equilibran. En ellos la prolongación de la realidad física más allá de los límites de la envolvente ya es algo más que una simple intuición. Un proceso en el que el tratamiento de la luz como un material de construcción más, tendrá un especial protagonismo. En la iglesia de la Coronación, la iluminación del muro curvo escenifica la condición ondulatoria de la luz, manifestándose como si de un patrón de interferencia se tratara. Frente a la disolución de lo material, el espacio se manifiesta aquí como un medio denso, alejado de la tradicional noción de vacío. Una doble naturaleza, onda y partícula, que será intuido también por Fisac en la materia a través de su uso comprometido del hormigón como único material de construcción. Richard Feynmann nos alerta de la ocupación del espacio por multitud de fuerzas electromagnéticas que, al igual que la luz, precisan de receptores específicos para captar su presencia. Sus célebres diagramas suponen además la visualización definitiva de los procesos subatómicos. Al igual que la abstracción absoluta en las artes plásticas, esas representaciones diagramáticas no son asimilables a imágenes obtenidas de nuestra experiencia. Una intuición plasmada en el uso del diagrama, que irán adquiriendo progresivamente los dibujos de Alejandro de la Sota. La sección del gimnasio Maravillas recoge los trazos de sus principales elementos constructivos: estructura, cerramientos, compartimentaciones…, pero también, y con la misma intensidad, los de las fuerzas que generan su espacio, considerando así su condición de elementos constituyentes. El vacío, nos deja claro Sota, es el lugar donde habitan dichas tensiones. La posterior simplificación de las formas acompañadas de la obsesión por su aligeramiento, la casi desaparición de la envolvente, incide en aquella idea con la que Paul Klee define la actividad del artista en su Teoría del Arte Moderno, y en la que se transmite el distanciamiento hacia lo aparente: No se trata de reproducir lo visible, se trata de volver visible. Así, en Bankunión y Aviaco, como en tantos otros proyectos, frente al objetivo de la forma, Sota plantea el límite como la acotación de un ámbito de actuación. Su propia representación aséptica y diagramática transmite la renuncia a una especificidad espacial. Gilles Deleuze expresa ese posicionamiento en Pintura, el Concepto de Diagrama: el diagrama como la posibilidad de cuadros infinitos, o la posibilidad infinita de cuadros. Aparece así una concepción probabilística del espacio en la que frente a la renuncia por la forma, la tendencia al aligeramiento, y lo difuso de su definición – ideas claras, definición borrosa, en palabras de Llinás referidas al modo de operar de Sota-, la insistente atención a algunos elementos como escaleras, protecciones o miradores parece trasmitir la idea de que la arquitectura queda condensada en aquellos acontecimientos que delatan su condición dinámica, transitoria. Primando la relación frente al objeto, el vínculo frente a lo tangible. English summary. The fifties and sixties were the years of the final incorporation of Spanish architecture to the international scene. Among the architects who star that no return leap, is the group of those who a few years later will be named by Juan Daniel Fullaondo as Escuela de Madrid. Carlos Flores, in his book Arquitectura Española Contemporánea 1880-1950, refers to those architects as those that applied to the difficult task of restoring in Spain an architecture that connected with theories, solutions and established languages in Europe during the first decades of the twentieth century. Sigfried Giedion proposes in Space, Time and Architecture, the origin of a new tradition, arising from the optical revolution at the beginning of the century. With tradition he refers to a new culture, covering the interplay of different human activities: the similarity of the methods used in architecture, building, painting, urban planning or science. This new feature, based on its independence and detachment from the previous period, is part of the evolutionary scheme that Thomas Kuhn proposes in his text The Structure of Scientific Revolutions, according to non-accumulative periods. Kuhn talks about the emergence of anomalies in each period, origin of thought crisis whose explanation will require a paradigm shift needed. In science, in the field of optical Thomas Young demonstrates at the early nineteenth century the wave nature of light with its double-slit experiment , in electromagnetism the postulation of the existence of the electric field by Michael Faraday involves a conceptual leap, and in thermodynamic, the consideration pointed by Planck about quantum energy radiation. In the arts, in a parallel process, Gleizes and Metzinger , in his collection of cubism achievements on their book Du Cubisme, speak of evolution occurring during the nineteenth century by the painting: from the idealism of beginning of the century, going for realism and impressionist representation of reality, and finishing regardless of the classical perspective . Mathematics also, once developed by Gauss and Lobachevsky and Bolyai consistent geometries that violate Euclid's fifth postulate , will end validating Riemann’s ambient spaces in which these geometries inhabit, decoupling the direct relationship between geometric space -the space environment that results in a type of geometry- , and physical space. Capi Corrales reflectes in his book Contando el Espacio, that non-Euclidean geometries were not noticeable outside the field of mathematics until the theory of relativity and cubism. The origin of the new tradition that Giedion relates to the new culture of modernity coincides with paradigmatic leaps pointed by the theory of relativity in science and Cubism in the visual arts. Both are extended during the first decades until quantum theory and absolute abstraction, barriers that the two main precursors of relativity and cubism, Einstein and Picasso never overcome. In that sense Giedion speaks about the origin, but also the development, and incorporates peripheral inputs from Brazil, Japan and Finland architecture, thus including organic revision advocated by Zevi as part of this new tradition, being open to the late addition of new contributions to the development of that culture of modernity. Removed the concept of Kant's transcendental aesthetics, of time as an absolute reference, and assumed the constant value of the speed of light, theory of relativity says there is no authentic concurrency. It is thus fixed the speed of light as one of the limits of the universe, and the equivalence of mass and energy. In cubism, spatial simultaneity results from the elimination of preferential points of view, resulting in the multiplicity descriptive of reality, which is displayed in decomposition levels, both the object and the space, and the resulting continuity between figure and background that architecture is reflected in the continuity between building and land. Without the consideration of an absolute point of view, there isn’t an authentic shape. Cubism, and its subsequent development by the vanguard arts, make use of geometry as a means of rebuilding the figure and space, taking penetration mechanisms, overlapping and transparency. Gyorgy Kepes suggest in Languaje of Vision, that cubist decomposition of the object involves successive planes autonomy, to become constituent elements. Something that reflects the Van Doesburg’s architectural axonometrics and culminates with the spaces proposed by Mies van der Rohe in his first European projects. These mechanisms are reflected in the first approaches by Javier Carvajal: the extension of Spanish Pantheon in Campo Verano Cemetery, virtual enclosure mentally reconstructed from 24 the use of only three planes, or in the Spanish Pavilion of New York, which organizes its ground floor from the tour, introducing the time parameter as an additional dimension. Carvajal adds to the differential use of the plane as a constituent, Carvajal incorporates its folding and forming enclosures available as a mechanism for spatial and formal qualification, promoting the extension between architecture and territory. A continuity that will be completed in the two houses built in Somosaguas. Volumetric decomposition, as the fragmentation achieved in the last cubist experiences, needs the incorporation of elements of memory - fountains, patios, shutters...- as a network of signals, such as those introduced by Picasso and Braque in their paintings to allow their interpretation. Braque insists in his interest in the space surrounding the objects. A search of the tactility of space contrary to the perspective, which moves the observer away from the object, and that in the gardens of Somosaguas seems to emanate from its own materiality. A tactile space away from the geometric space and Braque identified with the representative space in which Poincaré in La Science et l´hypothèse, located our feelings. To blur those boundaries of the object extends the space indefinitely. With the passage in Greek art from myth to logos, it opens up to mathematics as a tool for understanding the nature until the nineteenth century. Leon Lederman, in Symmetry and beautiful Universe, suggests that one of the greatest contributions of Einstein's theory is to change the mindset of nature, namely the search for symmetry principles that underlie physical laws. Considering that symmetry is the invariance of an object or system from a transformation and that physical laws are the same at any point in space, the space of our universe has a continuous translational symmetry. In the space occupation of the first proposals by Corrales and Molezún underlying structures appear that match enlosetados: parallelograms under continuous transformations, which nature identifies tridimensionally with the crystallographic groups. Plants in the Contemporary Art Museum in La Castellana, the residence in Miraflores, the Brussels pavilion or the Peugeot tower belong to this group. The architecture as a process of continuous occupation of the territory and of its transposition to the deck, embodied in structural lines coincide with the mathematical structure of the translational symmetry and infinite extension whose possibility is enhanced by the use of the transparent cover. Alongside this literal transparency inherent to the material, Colin Rowe and Robert Slutzky alert us another transparency inherent in the structure: phenomenal transparency, illustrated by the Juan Gris’ works, and whose intuition is reflected in the Huarte’s house in Puerta de Hierro in Madrid. Corrales and Molezún insist on a reading of its volume away from the frontal, in which the outline of their inclined roofs and tangential visual suggested by the organization of his circulations introduce a diagonal structure which overlaps the orthogonal understanding of its plant, drawing an intricate web of broken lines that allow the space fluctuate between the volumetric sequence proposal. Information concerning to the energy mean of light and the concept of atom start from the consideration by Plank about the energy emission, and conclude with a paradoxical situation: the dual nature of light - demonstrated by the explanation of Einstein's photoelectric effect-, and the dual nature of matter -assumed by Bohr and demonstrated by the Compton effect-. Finally, Schrödinger and Heisenberg will formulate the universal movement equation governing in undulatory matter, whose mathematical representation is what is known as a wave function. The object is thus identified with its wave function. Its undulatory expression speaks about the probability of being found in a certain place. Gyorgy Kepes emphasizess the need to simplify the language to move from the objectivity that still remains in the cubist painting to the total abstraction of the space. And this is how artists reduced the objects to simple geometric shapes, making emerge at a time, the plastic forces that tense or balance them, in a process that eventually eliminate any trace of matter. Robert Rosenblum in Modern Painting and the Northern Romantic Tradition. Friedrich to Rothko talks about how this rejection of matter in an almost impalpable vacuum: dense color light fields that broadcast a serene glow and seem to generate the elemental energies of natural light is directly linked to the relationship with nature that sets the northern romanticism. An expression of the power of nature concentrated in a vacuum which had been reason for thought by Michael Faraday in his application of the concept of electric field. Saenz de Oíza touches upon the material expression of the energy in its proposal with Jose Luis Romany to the chapel on the Camino de Santiago. The presence of electromagnetic forces, the only ones with the gravitational one capable of being experienced by the man will also visualize in the emerging nature of some of his works: the sanctuary of Aránzazu or Torres Blancas, but also in the flowing nature of its contours, and the inclusion of interest in the realization of space fluctuating boundary: the threshold as the center of the universe. Miguel Fisac, back from his trip to the Northern Countries, starts on a linguistic simplification oriented to the functional adequacy of spaces. In the Daimiel Institute, in the Institute to Teacher Formation or in the complex to the Dominican Fathers in Valladolid or Alcobendas, progressively organized into different functional volumes architecture, focusing in a parallel way in the manifestation of the links established between these volumes as a visualization of the forces that tense and balance them. The prolongation of the physical reality beyond the limits of the envelope is already something more than a simple intuition. A process in which the treatment of light as a construction material, have a special role. In the Coronation church, curved wall lighting dramatizes the undulatory condition of the light, manifesting as if an interference pattern is involved. Versus the dissolution of the material, the space is expressed here as a dense atmosphere, away from the traditional notion of the vacuum. A dual nature, wave and particle, which is also sensed by Fisac in his committed use of concrete as a unique construction material. Richard Feynman alerts us to the occupation of space by many electromagnetic forces, which like the light, require specific receptors to capture their presence. His famous diagrams also involve the final visualization of atomic processes. As absolute abstraction in the visual arts, these representations are not assimilated to images obtained from our experience. A diagrammatic nature, abstracted from figuration, which will obtein the pictures of Alejandro de la Sota. The section of Maravillas gym collects traces of its main building blocks: structure, enclosures... but also, and with the same intensity, of the forces that generate their space as constituent elements. Sota makes it clear: the vacuum is where inhabit these tensions. The subsequent simplification of forms, accompanied by the obsession with his lightening, the near disappearance of the envelope, touches upon that idea which Paul Klee defines the activity of the artist in his Modern Art Theory, the spacing out to the apparent: it is not to reproduce the visible, it is to turn visible. Thus, in Bankunión and Aviaco, as in many other projects, against the shape, raises the limit as the dimension of a scope. His own aseptic and diagrammatic representation transmits waiver to a spatial specificity that Gilles Deleuze clearly expressed in Painting. The Concept Diagram: The diagram as the possibility of infinite pictures, or infinite possibility of the picture. Thus appears the probabilistic concept of space in which, opposite to the diffuse of its definition -clear ideas, diffuse definition, as Llinas said- the insistent attention to some elements like stairs, guards or lookouts seems to concentrate the architecture in its dynamic condition, transitional. The relationship opposite the object, the link opposite the tangible.
Resumo:
Moment invariants have been thoroughly studied and repeatedly proposed as one of the most powerful tools for 2D shape identification. In this paper a set of such descriptors is proposed, being the basis functions discontinuous in a finite number of points. The goal of using discontinuous functions is to avoid the Gibbs phenomenon, and therefore to yield a better approximation capability for discontinuous signals, as images. Moreover, the proposed set of moments allows the definition of rotation invariants, being this the other main design concern. Translation and scale invariance are achieved by means of standard image normalization. Tests are conducted to evaluate the behavior of these descriptors in noisy environments, where images are corrupted with Gaussian noise up to different SNR values. Results are compared to those obtained using Zernike moments, showing that the proposed descriptor has the same performance in image retrieval tasks in noisy environments, but demanding much less computational power for every stage in the query chain.
Resumo:
Nowadays, earth stations have as a common feature the use of large reflector antenna for downloading data from satellites. Large reflectors have impairments such as mechanical complexity, low flexibility and high cost. Thus, the feasibility of other antenna technologies must be evaluated, such as conformal adaptive antennas based on multiple planar active arrays. In the scenery under study, the capability to track several satellites simultaneously, higher flexibility, lower production and maintenance cost, modularity and a more efficient use of the spectrum; are the most important advantage to boost up active antenna arrays over large dishes.
Resumo:
For small or medium size conformal array antennas in terms of the wave length, modal solutions in spectral domain for mutual coupling analysis are convenient for canonical shapes such as circular cylinder [1] or sphere [2], but as the antenna dimensions increase a large number of terms are necessary. For large structures the uniform theory of diffraction (UTD) is commonly used to solve this problem for canonical and arbitrarily convex shaped perfect electric conductor (PEC) surfaces [3]. A UTD solution for mutual coupling on an impedance cylinder has been introduced in [4], [5] but using a constant surface impedance.