28 resultados para Biological engineering
em Universidad Politécnica de Madrid
Resumo:
The mechanical properties of aortic wall, both healthy and pathological, are needed in order to develop and improve diagnostic and interventional criteria, and for the development of mechanical models to assess arterial integrity. This study focuses on the mechanical behaviour and rupture conditions of the human ascending aorta and its relationship with age and pathologies. Fresh ascending aortic specimens harvested from 23 healthy donors, 12 patients with bicuspid aortic valve (BAV) and 14 with aneurysm were tensile-tested in vitro under physiological conditions. Tensile strength, stretch at failure and elbow stress were measured. The obtained results showed that age causes a major reduction in the mechanical parameters of healthy ascending aortic tissue, and that no significant differences are found between the mechanical strength of aneurysmal or BAV aortic specimens and the corresponding age-matched control group. The physiological level of the stress in the circumferential direction was also computed to assess the physiological operation range of healthy and diseased ascending aortas. The mean physiological wall stress acting on pathologic aortas was found to be far from rupture, with factors of safety (defined as the ratio of tensile strength to the mean wall stress) larger than six. In contrast, the physiological operation of pathologic vessels lays in the stiff part of the response curve, losing part of its function of damping the pressure waves from the heart.
Resumo:
Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These tasks allow a high degree of personalization and individualization in therapies, based on the opportunities offered by new technologies.
Resumo:
Bruise damage is a major cause of quality loss for apples. It would be very useful to establish a method of characterizing bruise susceptibility in order to improve fruit handling, sometimes Magness-Taylor firmness is used as an indirect guide to handling requirements. The objective of the present work was to achieve a better bruise susceptibility prediction.
Resumo:
Nondestructive techniques are extensively researched for the measurement of physical properties of fruits related to quality. Optical properties can be applied mainly in the detection of those quality features which are related to the chemical composition of the fruit, color (in the VIS region) or chemical constituents (sugar, in the MR region) being the most important. The most relevant mechanical property of fruits is consistency, generally called firmness, and to date only techniques which are able to measure the mechanical properties of the fruit bulk tissue are used for its prediction. Fruits can be modelled as elastic bodies, or at least as partially elastic. Therefore, the measurement of some elastic constants of the fruit can be used for the evaluation of its firmness. The differences in the response to loading are relevant in studying a) fruit firmness and b) bruising susceptibility. Both have been modelled for selected fruit species and varieties.
Resumo:
A novel method for generating patient-specific high quality conforming hexahedral meshes is presented. The meshes are directly obtained from the segmentation of patient magnetic resonance (MR) images of abdominal aortic aneu-rysms (AAA). The MRI permits distinguishing between struc-tures of interest in soft tissue. Being so, the contours of the lumen, the aortic wall and the intraluminal thrombus (ILT) are available and thus the meshes represent the actual anato-my of the patient?s aneurysm, including the layered morpholo-gies of these structures. Most AAAs are located in the lower part of the aorta and the upper section of the iliac arteries, where the inherent tortuosity of the anatomy and the presence of the ILT makes the generation of high-quality elements at the bifurcation is a challenging task. In this work we propose a novel approach for building quadrilateral meshes for each surface of the sectioned geometry, and generating conforming hexahedral meshes by combining the quadrilateral meshes. Conforming hexahedral meshes are created for the wall and the ILT. The resulting elements are evaluated on four patients? datasets using the Scaled Jacobian metric. Hexahedral meshes of 25,000 elements with 94.8% of elements well-suited for FE analysis are generated.
Resumo:
The MobiGuide system provides patients with personalized decision support tools, based on computerized clinical guidelines, in a mobile environment. The generic capabilities of the system will be demonstrated applied to the clinical domain of Gestational Diabetes (GD). This paper presents a methodology to identify personalized recommendations, obtained from the analysis of the GD guideline. We added a conceptual parallel part to the formalization of the GD guideline called "parallel workflow" that allows considering patient?s personal context and preferences. As a result of analysing the GD guideline and eliciting medical knowledge, we identified three different types of personalized advices (therapy, measurements and upcoming events) that will be implemented to perform patients? guiding at home, supported by the MobiGuide system. These results will be essential to determine the distribution of functionalities between mobile and server decision support capabilities.
Resumo:
Schizophrenia is a mental disorder characterized by a breakdown of cognitive processes and by a deficit of typi-cal emotional responses. Effectiveness of computerized task has been demonstrated in the field of cognitive rehabilitation. However, current rehabilitation programs based on virtual environments normally focus on higher cognitive functions, not covering social cognition training. This paper presents a set of video-based tasks specifically designed for the rehabilita-tion of emotional processing deficits in patients in early stages of schizophrenia or schizoaffective disorders. These tasks are part of the Mental Health program of Guttmann NeuroPer-sonalTrainer® cognitive tele-rehabilitation platform, and entail innovation both from a clinical and technological per-spective in relation with former traditional therapeutic con-tents.
Resumo:
This paper proposes a first approach to Objective Motor Assessment (OMA) methodology. Also, it introduces the Dysfunctional profile (DP) concept. DP consists of a data matrix characterizing the Upper Limb (UL) physical alterations of a patient with Acquired Brain Injury (ABI) during the rehabilitation process. This research is based on the comparison methology of UL movement between subjects with ABI and healthy subjects as part of OMA. The purpose of this comparison is to classify subjects according to their motor control and subsequently issue a functional assessment of the movement. For this purpose Artificial Neural Networks (ANN) have been used to classify patients. Different network structures are tested. The obtained classification accuracy was 95.65%. This result allows the use of ANNs as a viable option for dysfunctional assessment. This work can be considered a pilot study for further research to corroborate these results.
Resumo:
In order to improve the body of knowledge about brain injury impairment is essential to develop image database with different types of injuries. This paper proposes a new methodology to model three types of brain injury: stroke, tumor and traumatic brain injury; and implements a system to navigate among simulated MRI studies. These studies can be used on research studies, to validate new processing methods and as an educational tool, to show different types of brain injury and how they affect to neuroanatomic structures.
Resumo:
The number and grade of injured neuroanatomic structures and the type of injury determine the degree of impairment after a brain injury event and the recovery options of the patient. However, the body of knowledge and clinical intervention guides are basically focused on functional disorder and they still do not take into account the location of injuries. The prognostic value of location information is not known in detail either. This paper proposes a feature-based detection algorithm, named Neuroanatomic-Based Detection Algorithm (NBDA), based on SURF (Speeded Up Robust Feature) to label anatomical brain structures on cortical and sub-cortical areas. Themain goal is to register injured neuroanatomic structures to generate a database containing patient?s structural impairment profile. This kind of information permits to establish a relation with functional disorders and the prognostic evolution during neurorehabilitation procedures.
Resumo:
Acquired Brain Injury (ABI) has become one of the most common causes of neurological disability in developed countries. Cognitive disorders result in a loss of independence and therefore patients? quality of life. Cognitive rehabilitation aims to promote patients? skills to achieve their highest degree of personal autonomy. New technologies such as interactive video, whereby real situations of daily living are reproduced within a controlled virtual environment, enable the design of personalized therapies with a high level of generalization and a great ecological validity. This paper presents a graphical tool that allows neuropsychologists to design, modify, and configure interactive video therapeutic activities, through the combination of graphic and natural language. The tool has been validated creating several Activities of Daily Living and a preliminary usability evaluation has been performed showing a good clinical acceptance in the definition of complex interactive video therapies for cognitive rehabilitation.
Resumo:
Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.
Resumo:
The present work covers the first validation efforts of the EVA Tracking System for the assessment of minimally invasive surgery (MIS) psychomotor skills. Instrument movements were recorded for 42 surgeons (4 expert, 22 residents, 16 novice medical students) and analyzed for a box trainer peg transfer task. Construct validation was established for 7/9 motion analysis parameters (MAPs). Concurrent validation was determined for 8/9 MAPs against the TrEndo Tracking System. Finally, automatic determination of surgical proficiency based on the MAPs was sought by 3 different approaches to supervised classification (LDA, SVM, ANFIS), with accuracy results of 61.9%, 83.3% and 80.9% respectively. Results not only reflect on the validation of EVA for skills? assessment, but also on the relevance of motion analysis of instruments in the determination of surgical competence.
Resumo:
Laparoscopic instrument tracking systems are a key element in image-guided interventions, which requires high accuracy to be used in a real surgical scenario. In addition, these systems are a suitable option for objective assessment of laparoscopic technical skills based on instrument motion analysis. This study presents a new approach that improves the accuracy of a previously presented system, which applies an optical pose tracking system to laparoscopic practice. A design enhancement of the artificial markers placed on the laparoscopic instrument as well as an improvement of the calibration process are presented as a means to achieve more accurate results. A technical evaluation has been performed in order to compare the accuracy between the previous design and the new approach. Results show a remarkable improvement in the fluctuation error throughout the measurement platform. Moreover, the accumulated distance error and the inclination error have been improved. The tilt range covered by the system is the same for both approaches, from 90º to 7.5º. The relative position error is better for the new approach mainly at close distances to the camera system
Resumo:
This paper presents the AMELIE Authoring Tool for e-health applications. AMELIE provides the means for creating video-based contents with a focus on e-learning and telerehabilitation processes. The main core of AMELIE lies in the efficient exploitation of raw multimedia resources, which may be already available at clinical centers or recorded ad hoc for learning purposes by health professionals. Three real use cases scenarios involving different target users are presented: (1) cognitive skills? training of surgeons in minimally invasive surgery (medical professionals), (2) training of informal carers for elderly home assistance and (3) cognitive rehabilitation of patients with acquired brain injury. Preliminary validation in the field of surgery hints at the potential of AMELIE; and its versatility in different medical applications is patent from the use cases described. Regardless, new validation studies are planned in the three main application areas identified in this work.