15 resultados para Anemometer

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deviation of calibration coefficients from five cup anemometer models over time was analyzed. The analysis was based on a series of laboratory calibrations between January 2001 and August 2010. The analysis was performed on two different groups of anemometers: (1) anemometers not used for any industrial purpose (that is, just stored); and (2) anemometers used in different industrial applications (mainly in the field—or outside—applications like wind farms). Results indicate a loss of performance of the studied anemometers over time. In the case of the unused anemometers the degradation shows a clear pattern. In the case of the anemometers used in the field, the data analyzed also suggest a loss of performance, yet the degradation does not show a clear trend. A recalibration schedule is proposed based on the observed performances variations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wake produced by the structural supports of the ultrasonic anemometers (UAs)causes distortions in the velocity field in the vicinity of the sonic path. These distortions are measured by the UA, inducing errors in the determination of the mean velocity, turbulence intensity, spectrum, etc.; basic parameters to determine the effect of wind on structures. Additionally, these distortions can lead to indefinition in the calibration function of the sensors (Cuerva et al., 2004). Several wind tunnel tests have been dedicated to obtaining experimental data, from which have been developed fit models to describe and to correct these distortions (Kaimal, 1978 and Wyngaard, 1985). This work explores the effect of a vortex wake generated by the supports of an UA, on the measurement of wind speed done by this instrument. To do this, the Von Karman¿s vortex street potential model is combined with the mathematical model of the measuring process carried out by UAs developed by Franchini et al. (2007). The obtained results are the correction functions of the measured wind velocity, which depends on the geometry of the sonic anemometer and aerodynamic conditions. These results have been validated with the ones obtained in a wind tunnel test done on a single path UA, especially developed for research. The supports of this UA have been modified in order to reproduce the conditions of the theoretical model. Good agreements between experimental and theoretical results have been found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of air density variations on the calibration constants of several models of anemometers has been analyzed. The analysis was based on a series of calibrations between March 2003 and February 2011. Results indicate a linear behavior of both calibration constants with the air density. The effect of changes in air density on the measured wind speed by an anemometer was also studied. The results suggest that there can be an important deviation of the measured wind speed with changes in air density from the one at which the anemometer was calibrated, and therefore the need to take this effect into account when calculating wind power estimations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calibration coefficients of two commercial anemometers equipped with different rotors were studied. The rotor cups had the same conical shape, while the size and distance to the rotation axis varied.The analysis was based on the 2-cup positions analytical model, derived using perturbation methods to include second-order effects such as pressure distribution along the rotating cups and friction.Thecomparison with the experimental data indicates a nonuniformdistribution of aerodynamic forces on the rotating cups, with higher forces closer to the rotating axis. The 2-cup analytical model is proven to be accurate enough to study the effect of complex forces on cup anemometer performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study the geometry of cups is experimentally studied through anemometer performance. This performance is analyzed in two different ways. On the one hand the anemometer transfer function between cases is compared. On the other hand the stationary rotation speed is decomposed into constant and harmonic terms, the comparison being established between the last ones. Results indicate that some cup shapes can improve the uniformity of anemometer rotation, this fact being important to reduce degradation due to ageing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cup anemometer has been used widely by the wind energy industry since its early beginning, covering two fundamental aspects: wind mill performance control and wind energy production forecast. Furthermore, despite modern technological advances such as LIDAR and SODAR, the cup anemometer remains clearly the most used instrument by the wind energy industry. Together with the major advantages of this instrument (precision, robustness), some issues must be taken into account by scientists and researchers when using it. Overspeeding, interaction with stream wakes due to allocation on masts and wind- mills, loss of performance due to wear and tear, change of performance due to different climatic conditions, checking of the maintenance status and recalibration, etc. In the present work a review of the research campaigns carried out at the IDR/UPM Institute to analyze cup anemometer performance is included. Several aspects of this instrument are examined: the calibration process, the loss of performances due to aging and wear and tear, the effect of changes of air density, the rotor aerodynamics, and the harmonic terms contained in the anemometer output signal and their possible relation to the anemometer performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor’s geometry, climatic conditions during calibration, and anemometers’ ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor’s geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer’s output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the harmonic terms related to the rotational speed of a cup anemometer is a way to detect anomalies such as wear and tear, rotor non-symmetries (rotor damage) or problems at the output signal system. The research already done in this matter at the IDR/UPM Institute is now taken to cup anemometers working on the field. A 1-2 year testing campaign is being carried out in collaboration with Kintech Engineering. 2 Thies First Class Advanced installed at 58 m and 73 m height in a meteorology tower are constantly monitored. The results will be correlated to the anemometer performance evolution studied through several calibrations planned to be performed along the testing campaign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A body with a shape similar to a hot wire with its sheath, but no prongs, has been placed close to the wall of a turbulent channel at Re_tau = 600. The results of the channel flow, without the wire, agree with previous published ones, despite the modest resolution and domain size. A simplified, two-dimensional version of the wire at the same Reynolds number has been studied to compare the dynamic response of cold and hot wires, where a slightly bigger perturbation is seen in the hot case, but an almost identical dynamic response. The cold wire seems to be able to measure instantaneous velocity with total drag after proper calibration. Being a DNS, the complete description of the flow field around the wire is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calibration results of one anemometer equipped with several rotors, varying their size, were analyzed. In each case, the 30-pulses pert turn output signal of the anemometer was studied using Fourier series decomposition and correlated with the anemometer factor (i.e., the anemometer transfer function). Also, a 3-cup analytical model was correlated to the data resulting from the wind tunnel measurements. Results indicate good correlation between the post-processed output signal and the working condition of the cup anemometer. This correlation was also reflected in the results from the proposed analytical model. With the present work the possibility of remotely checking cup anemometer status, indicating the presence of anomalies and, therefore, a decrease on the wind sensor reliability is revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cup anemometer rotor aerodynamics is analytically studied based on the aerodynamics of a single cup. The effect of the rotation on the aerodynamic force is included in the analytical model, together with the displacement of the aerodynamic center during one turn of the cup. The model can be fitted to the testing results, indicating the presence of both the aforementioned effects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a model of the measuring process of sonic anemometers with more than one measuring path is presented. The main hypothesis of the work is that the time variation of the turbulent speed field during the sequence of pulses that produces a measure of the wind speed vector affects the measurement. Therefore, the previously considered frozen flow, or instantaneous averaging, condition is relaxed. This time variation, quantified by the mean Mach number of the flow and the time delay between consecutive pulses firings, in combination with both the full geometry of sensors (acoustic path location and orientation) and the incidence angles of the mean with speed vector, give rise to significant errors in the measurement of turbulence which are not considered by models based on the hypothesis of instantaneous line averaging. The additional corrections (relative to the ones proposed by instantaneous line-averaging models) are strongly dependent on the wave number component parallel to the mean wind speed, the time delay between consecutive pulses, the Mach number of the flow, the geometry of the sensor and the incidence angles of mean wind speed vector. Kaimal´s limit k W1=1/l (where k W1 is the wave number component parallel to mean wind speed and l is the path length) for the maximum wave numbers from which the sonic process affects the measurement of turbulence is here generalized as k W1=C l /l, where C l is usually lesser than unity and depends on all the new parameters taken into account by the present model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a model for the measuring process of sonic anemometers (ultrasound pulse based) is presented. The differential equations that describe the travel of ultrasound pulses are solved in the general case of non-steady, non-uniform atmospheric flow field. The concepts of instantaneous line-average and travelling pulse-referenced average are established and employed to explain and calculate the differences between the measured turbulent speed (travelling pulse-referenced average) and the line-averaged one. The limit k1l=1 established by Kaimal in 1968, as the maximum value which permits the neglect of the influence of the sonic measuring process on the measurement of turbulent components is reviewed here. Three particular measurement cases are analysed: A non-steady, uniform flow speed field, a steady, non-uniform flow speed field and finally an atmospheric flow speed field. In the first case, for a harmonic time-dependent flow field, Mach number, M (flow speed to sound speed ratio) and time delay between pulses have revealed themselves to be important parameters in the behaviour of sonic anemometers, within the range of operation. The second case demonstrates how the spatial non-uniformity of the flow speed field leads to an influence of the finite transit time of the pulses (M≠0) even in the absence of non-steady behaviour of the wind speed. In the last case, a model of the influence of the sonic anemometer processes on the measurement of wind speed spectral characteristics is presented. The new solution is compared to the line-averaging models existing in the literature. Mach number and time delay significantly distort the measurement in the normal operational range. Classical line averaging solutions are recovered when Mach number and time delay between pulses go to zero in the new proposed model. The results obtained from the mathematical model have been applied to the calculation of errors in different configurations of practical interest, such as an anemometer located on a meteorological mast and the transfer function of a sensor in an atmospheric wind. The expressions obtained can be also applied to determine the quality requirements of the flow in a wind tunnel used for ultrasonic anemometer calibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement deviations of cup anemometers are studied by analyzing the rotational speed of the rotor at steady state (constant wind speed). The differences of the measured rotational speed with respect to the averaged one based on complete turns of the rotor are produced by the harmonic terms of the rotational speed. Cup anemometer sampling periods include a certain number of complete turns of the rotor, plus one incomplete turn, the residuals from the harmonic terms integration within that incomplete turn (as part of the averaging process) being responsible for the mentioned deviations. The errors on the rotational speed due to the harmonic terms are studied analytically and then experimentally, with data from more than 500 calibrations performed on commercial anemometers.