13 resultados para Adaptive learning, Sticky information, Inflation dynamics, Nonlinearities
em Universidad Politécnica de Madrid
Resumo:
El estudio de la evolución tecnológica a partir de logros concretos de la humanidad es una forma de aproximación a la enseñanza de la ingeniería. Comprender que las tecnologías existentes son el resultado de un depurado proceso de creación/selección no es trivial. Por ello combinar un conocimiento deductivo profundo con un pensamiento divergente que favorezca la obtención de soluciones viables y creativas es fundamental en el contexto de incertidumbre económica actual. En este ensayo se comparan siete técnicas de enseñanza que pretenden favorecer el PD en una estrategia adaptativa para alumnos con distintos estilos cognitivos (AA) sobre la base de un proceso de vigilancia tecnológica (VT) aplicada a algunos objetos cotidianos y otros muy especializados.
Resumo:
Nowadays, many researches focus their efforts in studies and applications on the Learning area. However, there is a lack of a reference system that permits to know the positioning and the existing links between Learning and Information Technologies. This paper proposes a Cartography where explains the relationships between the elements that compose the Learning Theories and Information Technologies, considering the own features of the learner and the Information Technologies Properties. This intersection will allow us to know what Information Technologies Properties promote Learning Futures.
Resumo:
Despite the acknowledged need of providing a personalized and adaptive learning process for all, current learning management systems do not properly cover personalization and accessibility issues and they are still struggling to support the reusability requirements coming from the pervasive usage of standards. There is a lack of frameworks for providing layered-based infrastructure covering the interoperability required to manage the whole range of standards, applications and services needed to meet accessibility and adaptations needs of lifelong learning services.
Resumo:
Durante la actividad diaria, la sociedad actual interactúa constantemente por medio de dispositivos electrónicos y servicios de telecomunicaciones, tales como el teléfono, correo electrónico, transacciones bancarias o redes sociales de Internet. Sin saberlo, masivamente dejamos rastros de nuestra actividad en las bases de datos de empresas proveedoras de servicios. Estas nuevas fuentes de datos tienen las dimensiones necesarias para que se puedan observar patrones de comportamiento humano a grandes escalas. Como resultado, ha surgido una reciente explosión sin precedentes de estudios de sistemas sociales, dirigidos por el análisis de datos y procesos computacionales. En esta tesis desarrollamos métodos computacionales y matemáticos para analizar sistemas sociales por medio del estudio combinado de datos derivados de la actividad humana y la teoría de redes complejas. Nuestro objetivo es caracterizar y entender los sistemas emergentes de interacciones sociales en los nuevos espacios tecnológicos, tales como la red social Twitter y la telefonía móvil. Analizamos los sistemas por medio de la construcción de redes complejas y series temporales, estudiando su estructura, funcionamiento y evolución en el tiempo. También, investigamos la naturaleza de los patrones observados por medio de los mecanismos que rigen las interacciones entre individuos, así como medimos el impacto de eventos críticos en el comportamiento del sistema. Para ello, hemos propuesto modelos que explican las estructuras globales y la dinámica emergente con que fluye la información en el sistema. Para los estudios de la red social Twitter, hemos basado nuestros análisis en conversaciones puntuales, tales como protestas políticas, grandes acontecimientos o procesos electorales. A partir de los mensajes de las conversaciones, identificamos a los usuarios que participan y construimos redes de interacciones entre los mismos. Específicamente, construimos una red para representar quién recibe los mensajes de quién y otra red para representar quién propaga los mensajes de quién. En general, hemos encontrado que estas estructuras tienen propiedades complejas, tales como crecimiento explosivo y distribuciones de grado libres de escala. En base a la topología de estas redes, hemos indentificado tres tipos de usuarios que determinan el flujo de información según su actividad e influencia. Para medir la influencia de los usuarios en las conversaciones, hemos introducido una nueva medida llamada eficiencia de usuario. La eficiencia se define como el número de retransmisiones obtenidas por mensaje enviado, y mide los efectos que tienen los esfuerzos individuales sobre la reacción colectiva. Hemos observado que la distribución de esta propiedad es ubicua en varias conversaciones de Twitter, sin importar sus dimensiones ni contextos. Con lo cual, sugerimos que existe universalidad en la relación entre esfuerzos individuales y reacciones colectivas en Twitter. Para explicar los factores que determinan la emergencia de la distribución de eficiencia, hemos desarrollado un modelo computacional que simula la propagación de mensajes en la red social de Twitter, basado en el mecanismo de cascadas independientes. Este modelo nos permite medir el efecto que tienen sobre la distribución de eficiencia, tanto la topología de la red social subyacente, como la forma en que los usuarios envían mensajes. Los resultados indican que la emergencia de un grupo selecto de usuarios altamente eficientes depende de la heterogeneidad de la red subyacente y no del comportamiento individual. Por otro lado, hemos desarrollado técnicas para inferir el grado de polarización política en redes sociales. Proponemos una metodología para estimar opiniones en redes sociales y medir el grado de polarización en las opiniones obtenidas. Hemos diseñado un modelo donde estudiamos el efecto que tiene la opinión de un pequeño grupo de usuarios influyentes, llamado élite, sobre las opiniones de la mayoría de usuarios. El modelo da como resultado una distribución de opiniones sobre la cual medimos el grado de polarización. Aplicamos nuestra metodología para medir la polarización en redes de difusión de mensajes, durante una conversación en Twitter de una sociedad políticamente polarizada. Los resultados obtenidos presentan una alta correspondencia con los datos offline. Con este estudio, hemos demostrado que la metodología propuesta es capaz de determinar diferentes grados de polarización dependiendo de la estructura de la red. Finalmente, hemos estudiado el comportamiento humano a partir de datos de telefonía móvil. Por una parte, hemos caracterizado el impacto que tienen desastres naturales, como innundaciones, sobre el comportamiento colectivo. Encontramos que los patrones de comunicación se alteran de forma abrupta en las áreas afectadas por la catástofre. Con lo cual, demostramos que se podría medir el impacto en la región casi en tiempo real y sin necesidad de desplegar esfuerzos en el terreno. Por otra parte, hemos estudiado los patrones de actividad y movilidad humana para caracterizar las interacciones entre regiones de un país en desarrollo. Encontramos que las redes de llamadas y trayectorias humanas tienen estructuras de comunidades asociadas a regiones y centros urbanos. En resumen, hemos mostrado que es posible entender procesos sociales complejos por medio del análisis de datos de actividad humana y la teoría de redes complejas. A lo largo de la tesis, hemos comprobado que fenómenos sociales como la influencia, polarización política o reacción a eventos críticos quedan reflejados en los patrones estructurales y dinámicos que presentan la redes construidas a partir de datos de conversaciones en redes sociales de Internet o telefonía móvil. ABSTRACT During daily routines, we are constantly interacting with electronic devices and telecommunication services. Unconsciously, we are massively leaving traces of our activity in the service providers’ databases. These new data sources have the dimensions required to enable the observation of human behavioral patterns at large scales. As a result, there has been an unprecedented explosion of data-driven social research. In this thesis, we develop computational and mathematical methods to analyze social systems by means of the combined study of human activity data and the theory of complex networks. Our goal is to characterize and understand the emergent systems from human interactions on the new technological spaces, such as the online social network Twitter and mobile phones. We analyze systems by means of the construction of complex networks and temporal series, studying their structure, functioning and temporal evolution. We also investigate on the nature of the observed patterns, by means of the mechanisms that rule the interactions among individuals, as well as on the impact of critical events on the system’s behavior. For this purpose, we have proposed models that explain the global structures and the emergent dynamics of information flow in the system. In the studies of the online social network Twitter, we have based our analysis on specific conversations, such as political protests, important announcements and electoral processes. From the messages related to the conversations, we identify the participant users and build networks of interactions with them. We specifically build one network to represent whoreceives- whose-messages and another to represent who-propagates-whose-messages. In general, we have found that these structures have complex properties, such as explosive growth and scale-free degree distributions. Based on the topological properties of these networks, we have identified three types of user behavior that determine the information flow dynamics due to their influence. In order to measure the users’ influence on the conversations, we have introduced a new measure called user efficiency. It is defined as the number of retransmissions obtained by message posted, and it measures the effects of the individual activity on the collective reacixtions. We have observed that the probability distribution of this property is ubiquitous across several Twitter conversation, regardlessly of their dimension or social context. Therefore, we suggest that there is a universal behavior in the relationship between individual efforts and collective reactions on Twitter. In order to explain the different factors that determine the user efficiency distribution, we have developed a computational model to simulate the diffusion of messages on Twitter, based on the mechanism of independent cascades. This model, allows us to measure the impact on the emergent efficiency distribution of the underlying network topology, as well as the way that users post messages. The results indicate that the emergence of an exclusive group of highly efficient users depends upon the heterogeneity of the underlying network instead of the individual behavior. Moreover, we have also developed techniques to infer the degree of polarization in social networks. We propose a methodology to estimate opinions in social networks and to measure the degree of polarization in the obtained opinions. We have designed a model to study the effects of the opinions of a small group of influential users, called elite, on the opinions of the majority of users. The model results in an opinions distribution to which we measure the degree of polarization. We apply our methodology to measure the polarization on graphs from the messages diffusion process, during a conversation on Twitter from a polarized society. The results are in very good agreement with offline and contextual data. With this study, we have shown that our methodology is capable of detecting several degrees of polarization depending on the structure of the networks. Finally, we have also inferred the human behavior from mobile phones’ data. On the one hand, we have characterized the impact of natural disasters, like flooding, on the collective behavior. We found that the communication patterns are abruptly altered in the areas affected by the catastrophe. Therefore, we demonstrate that we could measure the impact of the disaster on the region, almost in real-time and without needing to deploy further efforts. On the other hand, we have studied human activity and mobility patterns in order to characterize regional interactions on a developing country. We found that the calls and trajectories networks present community structure associated to regional and urban areas. In summary, we have shown that it is possible to understand complex social processes by means of analyzing human activity data and the theory of complex networks. Along the thesis, we have demonstrated that social phenomena, like influence, polarization and reaction to critical events, are reflected in the structural and dynamical patterns of the networks constructed from data regarding conversations on online social networks and mobile phones.
Resumo:
This article presents a novel system and a control strategy for visual following of a 3D moving object by an Unmanned Aerial Vehicle UAV. The presented strategy is based only on the visual information given by an adaptive tracking method based on the color information, which jointly with the dynamics of a camera fixed to a rotary wind UAV are used to develop an Image-based visual servoing IBVS system. This system is focused on continuously following a 3D moving target object, maintaining it with a fixed distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document. Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document.
Resumo:
This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.
Resumo:
This paper describes a knowledge-based approach for summarizing and presenting the behavior of hydrologic networks. This approach has been designed for visualizing data from sensors and simulations in the context of emergencies caused by floods. It follows a solution for event summarization that exploits physical properties of the dynamic system to automatically generate summaries of relevant data. The summarized information is presented using different modes such as text, 2D graphics and 3D animations on virtual terrains. The presentation is automatically generated using a hierarchical planner with abstract presentation fragments corresponding to discourse patterns, taking into account the characteristics of the user who receives the information and constraints imposed by the communication devices (mobile phone, computer, fax, etc.). An application following this approach has been developed for a national hydrologic information infrastructure of Spain.
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
This paper presents a project for providing the students of Structural Engineering with the flexibility to learn outside classroom schedules. The goal is a framework for adaptive E-learning based on a repository of open educational courseware with a set of basic Structural Engineering concepts and fundamentals. These are paramount for students to expand their technical knowledge and skills in structural analysis and design of tall buildings, arch-type structures as well as bridges. Thus, concepts related to structural behaviour such as linearity, compatibility, stiffness and influence lines have traditionally been elusive for students. The objective is to facilitate the student a teachinglearning process to acquire the necessary intuitive knowledge, cognitive skills and the basis for further technological modules and professional development in this area. As a side effect, the system is expected to help the students improve their preparation for exams on the subject. In this project, a web-based open-source system for studying influence lines on continuous beams is presented. It encompasses a collection of interactive user-friendly applications accessible via Web, written in JavaScript under JQuery and Dygraph Libraries, taking advantage of their efficiency and graphic capabilities. It is performed in both Spanish and English languages. The student is enabled to set the geometric, topologic, boundary and mechanic layout of a continuous beam. While changing the loading and the support conditions, the changes in the beam response prompt on the screen, so that the effects of the several issues involved in structural analysis become apparent. This open interaction with the user allows the student to simulate and virtually infer the structural response. Different levels of complexity can be handled, whereas an ongoing help is at hand for any of them. Students can freely boost their experiential learning on this subject at their own pace, in order to further share, process, generalize and apply the relevant essential concepts of Structural Engineering analysis. Besides, this collection is being added to the "Virtual Lab of Continuum Mechanics" of the UPM, launched in 2013 (http://serviciosgate.upm.es/laboratoriosvirtuales/laboratorios/medios-continuos-en-construcci%C3%B3n)
Resumo:
La forma de consumir contenidos en Internet ha cambiado durante los últimos años. Inicialmente se empleaban webs estáticas y con contenidos pobres visualmente. Con la evolución de las redes de comunicación, esta tendencia ha variado. A día de hoy, deseamos páginas agradables, accesibles y que nos presenten temas variados. Todo esto ha cambiado la forma de crear páginas web y en todos los casos se persigue el objetivo de atraer a los usuarios. El gran auge de los smartphones y las aplicaciones móviles que invaden el mercado actual han revolucionado el mundo del estudio de los idiomas permitiendo compatibilizar los recursos punteros con el aprendizaje tradicional. La popularidad de los dispositivos móviles y de las aplicaciones ha sido el principal motivo de la realización de este proyecto. En él se realizará un análisis de las diferentes tecnologías existentes y se elegirá la mejor opción que se ajuste a nuestras necesidades para poder desarrollar un sistema que implemente el enfoque llamado Mobile Assisted Language Learning (MALL) que supone una aproximación innovadora al aprendizaje de idiomas con la ayuda de un dispositivo móvil. En este documento se va a ofrecer una panorámica general acerca del desarrollo de aplicaciones para dispositivos móviles en el entorno del e-learning. Se estudiarán características técnicas de diferentes plataformas seleccionando la mejor opción para la implementación de un sistema que proporcione los contenidos básicos para el aprendizaje de un idioma, en este caso del inglés, de forma intuitiva y divertida. Dicho sistema permitirá al usuario mejorar su nivel de inglés mediante una interfaz web de forma dinámica y cercana empleando los recursos que ofrecen los dispositivos móviles y haciendo uso del diseño adaptativo. Este proyecto está pensado para los usuarios que dispongan de poco tiempo libre para realizar un curso de forma presencial o, mejor aún, para reforzar o repasar contenidos ya aprendidos por otros medios más tradicionales o no. La aplicación ofrece la posibilidad de que se haga uso del sistema de forma fácil y sencilla desde cualquier dispositivo móvil del que se disponga como es un smartphone, tablet o un ordenador personal, compitiendo con otros usuarios o contra uno mismo y mejorando así el nivel de partida a través de las actividades propuestas. Durante el proyecto se han comparado diversas soluciones, la mayoría de código abierto y de libre distribución que permiten desplegar servicios de almacenamiento accesibles mediante Internet. Se concluirá con un caso práctico analizando los requisitos técnicos y llevando a cabo las fases de análisis, diseño, creación de la base de datos, implementación y pruebas dentro del ciclo de vida del software. Finalmente, se migrará la aplicación con toda la información a un servidor en la nube. ABSTRACT. The way of consuming content on the Internet has changed over the past years. Initially, static websites were used with poor visual contents. Nevertheless, with the evolution of communication networks this trend has changed. Nowadays, we expect pleasant, accessible and varied topic pages and such expectations have changed the way to create web pages generally aiming at appealing and therefore, attracting users. The great boom of smartphones and mobile applications in the current market, have revolutionized the world of language learning as they make it possible to combine computing with traditional learning resources. The popularity of mobile devices and applications has been the main reason for the development of this project. Here, the different existing technologies will be examined and we will try to select the best option that adapts to our needs in order to develop a system that implements Mobile Assisted Language Learning (MALL) that in broad terms implies an approach to language learning with the help of a mobile device. This report provides an overview of the development of applications for mobile devices in the e-learning environment. We will study the technical characteristics of different platforms and we will select the best option for the implementation of a system that provide the basic content for learning a language, in this case English, by means of an intuitive and fun method. This system will allow the user to improve their level of English with a web interface in a dynamic and close way employing the resources offered by mobile devices using the adaptive design. This project is intended for users who do not have enough free time to make a classroom course or to review contents from more traditional courses as it offers the possibility to make use of the system quickly and easily from any mobile device available such as a smartphone, a tablet or a personal computer, competing with other users or against oneself and thus improving their departing level through different activities. During the project, different solutions have been compared. Most of them, open source and free distribution that allow to deploy storage services accessible via the Internet. It will conclude with a case study analyzing the technical requirements and conducting phases of analysis, design and creation of a database, implementation and testing in the software lifecycle. Finally, the application will be migrated with all the information to a server in the cloud.