74 resultados para AIR TRANSPORT MANAGEMENT

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyses the structure of air traffic and its distribution among the different countries in the European Union, as well as traffic with an origin or destination in non-EU countries. Data sources are Eurostat statistics and actual flight information from EUROCONTROL. Relevant variables such as the number of flights, passengers or cargo tonnes and production indicators (RPKs) are used together with fuel consumption and CO2 emissions data. The segmentation of air traffic in terms of distance permits an assessment of air transport competition with surface transport modes. The results show a clear concentration of traffic in the five larger countries (France, Germany, Italy, Spain and UK), in terms of RPKs. In terms of distance the segment between 500 and 1000 km in the EU, has more flights, passengers, RTKs and CO2 emissions than larger distances. On the environmental side, the distribution of CO2 emissions within the EU Member States is presented, together with fuel efficiency parameters. In general, a direct relationship between RPKs and CO2 emissions is observed for all countries and all distance bands. Consideration is given to the uptake of alternative fuels. Segmenting CO2 emissions per distance band and aircraft type reveals which flights contribute the most the overall EU CO2 emissions. Finally, projections for future CO2 emissions are estimated, according to three different air traffic growth and biofuel introduction scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As it is defined in ATM 2000+ Strategy (Eurocontrol 2001), the mission of the Air Traffic Management (ATM) System is: “For all the phases of a flight, the ATM system should facilitate a safe, efficient, and expedite traffic flow, through the provision of adaptable ATM services that can be dimensioned in relation to the requirements of all the users and areas of the European air space. The ATM services should comply with the demand, be compatible, operate under uniform principles, respect the environment and satisfy the national security requirements.” The objective of this paper is to present a methodology designed to evaluate the status of the ATM system in terms of the relationship between the offered capacity and traffic demand, identifying weakness areas and proposing solutions. The first part of the methodology relates to the characterization and evaluation of the current system, while a second part proposes an approach to analyze the possible development limit. As part of the work, general criteria are established to define the framework in which the analysis and diagnostic methodology presented is placed. They are: the use of Air Traffic Control (ATC) sectors as analysis unit, the presence of network effects, the tactical focus, the relative character of the analysis, objectivity and a high level assessment that allows assumptions on the human and Communications, Navigation and Surveillance (CNS) elements, considered as the typical high density air traffic resources. The steps followed by the methodology start with the definition of indicators and metrics, like the nominal criticality or the nominal efficiency of a sector; scenario characterization where the necessary data is collected; network effects analysis to study the relations among the constitutive elements of the ATC system; diagnostic by means of the “System Status Diagram”; analytical study of the ATC system development limit; and finally, formulation of conclusions and proposal for improvement. This methodology was employed by Aena (Spanish Airports Manager and Air Navigation Service Provider) and INECO (Spanish Transport Engineering Company) in the analysis of the Spanish ATM System in the frame of the Spanish airspace capacity sustainability program, although it could be applied elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the architecture of a computer system conceived as an intelligent assistant for public transport management. The goal of the system is to help operators of a control center in making strategic decisions about how to solve problems of a fleet of buses in an urban network. The system uses artificial intelligence techniques to simulate the decision processes. In particular, a complex knowledge model has been designed by using advanced knowledge engineering methods that integrates three main tasks: diagnosis, prediction and planning. Finally, the paper describes two particular applications developed following this architecture for the cities of Torino (Italy) and Vitoria (Spain).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First, this paper describes a future layered Air Traffic Management (ATM) system centred in the execution phase of flights. The layered ATM model is based on the work currently performed by SESAR [1] and takes into account the availability of accurate and updated flight information ?seen by all? across the European airspace. This shared information of each flight will be referred as Reference Business Trajectory (RBT). In the layered ATM system, exchanges of information will involve several actors (human or automatic), which will have varying time horizons, areas of responsibility and tasks. Second, the paper will identify the need to define the negotiation processes required to agree revisions to the RBT in the layered ATM system. Third, the final objective of the paper is to bring to the attention of researchers and engineers the communalities between multi-player games and Collaborative Decision Making processes (CDM) in a layered ATM system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ponencia invitada sobre gestion de trafico aereo en el curso de verano de la UPM Research in Decision Support Systems for future Air Traffic Management

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an agent-based approach for the simulation of air traffic management (ATM) in Europe that was designed to help analyze proposals for future ATM systems. This approach is able to represent new collaborative deci-sion processes for flow traffic management, it uses an intermediate level of ab-straction (useful for simulations at larger scales), and was designed to be a practi-cal tool (open and reusable) for the development of different ATM studies. It was successfully applied in three studies related to the design of future ATM systems in Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study which examines the use of aircraft as wind sensors in a terminal area for real-time wind estimation in order to improve aircraft trajectory prediction is presented in this paper. We describe not only different sources in the aircraft systems that provide the variables needed to derivate the wind velocity but the capabilities which allow us to present this information for ATM Applications. Based on wind speed samples from aircraft landing at Madrid-Barajas airport, a real-time wind field will be estimated using a data processing approach through a minimum variance method. Finally the accuracy of this procedure will be evaluated for this information to be useful to Air Traffic Control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a representation of the legal framework in the air transport passenger's rights domain and the foremost incidents that trigger the top of consumer complaints ranking in the EU. It comprises the development of a small network of three ontologies, formalisation of scenarios, specification of properties and identification of relations. The approach is illustrated by means of a case study based in the context of a real life cancelled flight incident. This is part of an intended support-system that aims to provide both consumers and companies with relevant legal information to enhance the decision-making process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to present a preliminary version of asupport-system in the air transport passenger domain. This system relies upon an underlying on-tological structure representing a normative framework to facilitatethe provision of contextualized relevant legal information.This information includes the pas-senger's rights and itenhances self-litigation and the decision-making process of passengers.Our contribution is based in the attempt of rendering a user-centric-legal informationgroundedon case-scenarios of the most pronounced incidents related to the consumer complaints in the EU.A number ofadvantages with re-spect to the current state-of-the-art services are discussed and a case study illu-strates a possible technological application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La gestión del tráfico aéreo (Air Traffic Management, ATM) está experimentando un cambio de paradigma hacia las denominadas operaciones basadas trayectoria. Bajo dicho paradigma se modifica el papel de los controladores de tráfico aéreo desde una operativa basada su intervención táctica continuada hacia una labor de supervisión a más largo plazo. Esto se apoya en la creciente confianza en las soluciones aportadas por las herramientas automatizadas de soporte a la decisión más modernas. Para dar soporte a este concepto, se precisa una importante inversión para el desarrollo, junto con la adquisición de nuevos equipos en tierra y embarcados, que permitan la sincronización precisa de la visión de la trayectoria, basada en el intercambio de información entre ambos actores. Durante los últimos 30 a 40 años las aerolíneas han generado uno de los menores retornos de la inversión de entre todas las industrias. Sin beneficios tangibles, la industria aérea tiene dificultades para atraer el capital requerido para su modernización, lo que retrasa la implantación de dichas mejoras. Esta tesis tiene como objetivo responder a la pregunta de si las capacidades actualmente instaladas en las aeronaves comerciales se pueden aplicar para lograr la sincronización de la trayectoria con el nivel de calidad requerido. Además, se analiza en ella si, conjuntamente con mejoras en las herramientas de predicción trayectorias instaladas en tierra en para facilitar la gestión de las arribadas, dichas capacidades permiten obtener los beneficios esperados en el marco de las operaciones basadas en trayectoria. Esto podría proporcionar un incentivo para futuras actualizaciones de la aviónica que podrían llevar a mejoras adicionales. El concepto operacional propuesto en esta tesis tiene como objetivo permitir que los aviones sean pilotados de una manera consistente con las técnicas actuales de vuelo optimizado. Se permite a las aeronaves que desciendan en el denominado “modo de ángulo de descenso gestionado” (path-managed mode), que es el preferido por la mayoría de las compañías aéreas, debido a que conlleva un reducido consumo de combustible. El problema de este modo es que en él no se controla de forma activa el tiempo de llegada al punto de interés. En nuestro concepto operacional, la incertidumbre temporal se gestiona en mediante de la medición del tiempo en puntos estratégicamente escogidos a lo largo de la trayectoria de la aeronave, y permitiendo la modificación por el control de tierra de la velocidad de la aeronave. Aunque la base del concepto es la gestión de las ordenes de velocidad que se proporcionan al piloto, para ser capaces de operar con los niveles de equipamiento típicos actualmente, dicho concepto también constituye un marco en el que la aviónica más avanzada (por ejemplo, que permita el control por el FMS del tiempo de llegada) puede integrarse de forma natural, una vez que esta tecnología este instalada. Además de gestionar la incertidumbre temporal a través de la medición en múltiples puntos, se intenta reducir dicha incertidumbre al mínimo mediante la mejora de las herramienta de predicción de la trayectoria en tierra. En esta tesis se presenta una novedosa descomposición del proceso de predicción de trayectorias en dos etapas. Dicha descomposición permite integrar adecuadamente los datos de la trayectoria de referencia calculada por el Flight Management System (FMS), disponibles usando Futuro Sistema de Navegación Aérea (FANS), en el sistema de predicción de trayectorias en tierra. FANS es un equipo presente en los aviones comerciales de fuselaje ancho actualmente en la producción, e incluso algunos aviones de fuselaje estrecho pueden tener instalada avionica FANS. Además de informar automáticamente de la posición de la aeronave, FANS permite proporcionar (parte de) la trayectoria de referencia en poder de los FMS, pero la explotación de esta capacidad para la mejora de la predicción de trayectorias no se ha estudiado en profundidad en el pasado. La predicción en dos etapas proporciona una solución adecuada al problema de sincronización de trayectorias aire-tierra dado que permite la sincronización de las dimensiones controladas por el sistema de guiado utilizando la información de la trayectoria de referencia proporcionada mediante FANS, y también facilita la mejora en la predicción de las dimensiones abiertas restantes usado un modelo del guiado que explota los modelos meteorológicos mejorados disponibles en tierra. Este proceso de predicción de la trayectoria de dos etapas se aplicó a una muestra de 438 vuelos reales que realizaron un descenso continuo (sin intervención del controlador) con destino Melbourne. Dichos vuelos son de aeronaves del modelo Boeing 737-800, si bien la metodología descrita es extrapolable a otros tipos de aeronave. El método propuesto de predicción de trayectorias permite una mejora en la desviación estándar del error de la estimación del tiempo de llegada al punto de interés, que es un 30% menor que la que obtiene el FMS. Dicha trayectoria prevista mejorada se puede utilizar para establecer la secuencia de arribadas y para la asignación de las franjas horarias para cada aterrizaje (slots). Sobre la base del slot asignado, se determina un perfil de velocidades que permita cumplir con dicho slot con un impacto mínimo en la eficiencia del vuelo. En la tesis se propone un nuevo algoritmo que determina las velocidades requeridas sin necesidad de un proceso iterativo de búsqueda sobre el sistema de predicción de trayectorias. El algoritmo se basa en una parametrización inteligente del proceso de predicción de la trayectoria, que permite relacionar el tiempo estimado de llegada con una función polinómica. Resolviendo dicho polinomio para el tiempo de llegada deseado, se obtiene de forma natural el perfil de velocidades optimo para cumplir con dicho tiempo de llegada sin comprometer la eficiencia. El diseño de los sistemas de gestión de arribadas propuesto en esta tesis aprovecha la aviónica y los sistemas de comunicación instalados de un modo mucho más eficiente, proporcionando valor añadido para la industria. Por tanto, la solución es compatible con la transición hacia los sistemas de aviónica avanzados que están desarrollándose actualmente. Los beneficios que se obtengan a lo largo de dicha transición son un incentivo para inversiones subsiguientes en la aviónica y en los sistemas de control de tráfico en tierra. ABSTRACT Air traffic management (ATM) is undergoing a paradigm shift towards trajectory based operations where the role of an air traffic controller evolves from that of continuous intervention towards supervision, as decision making is improved based on increased confidence in the solutions provided by advanced automation. To support this concept, significant investment for the development and acquisition of new equipment is required on the ground as well as in the air, to facilitate the high degree of trajectory synchronisation and information exchange required. Over the past 30-40 years the airline industry has generated one of the lowest returns on invested capital among all industries. Without tangible benefits realised, the airline industry may find it difficult to attract the required investment capital and delay acquiring equipment needed to realise the concept of trajectory based operations. In response to these challenges facing the modernisation of ATM, this thesis aims to answer the question whether existing aircraft capabilities can be applied to achieve sufficient trajectory synchronisation and improvements to ground-based trajectory prediction in support of the arrival management process, to realise some of the benefits envisioned under trajectory based operations, and to provide an incentive for further avionics upgrades. The proposed operational concept aims to permit aircraft to operate in a manner consistent with current optimal aircraft operating techniques. It allows aircraft to descend in the fuel efficient path managed mode as preferred by a majority of airlines, with arrival time not actively controlled by the airborne automation. The temporal uncertainty is managed through metering at strategically chosen points along the aircraft’s trajectory with primary use of speed advisories. While the focus is on speed advisories to support all aircraft and different levels of equipage, the concept also constitutes a framework in which advanced avionics as airborne time-of-arrival control can be integrated once this technology is widely available. In addition to managing temporal uncertainty through metering at multiple points, this temporal uncertainty is minimised by improving the supporting trajectory prediction capability. A novel two-stage trajectory prediction process is presented to adequately integrate aircraft trajectory data available through Future Air Navigation Systems (FANS) into the ground-based trajectory predictor. FANS is standard equipment on any wide-body aircraft in production today, and some single-aisle aircraft are easily capable of being fitted with FANS. In addition to automatic position reporting, FANS provides the ability to provide (part of) the reference trajectory held by the aircraft’s Flight Management System (FMS), but this capability has yet been widely overlooked. The two-stage process provides a ‘best of both world’s’ solution to the air-ground synchronisation problem by synchronising with the FMS reference trajectory those dimensions controlled by the guidance mode, and improving on the prediction of the remaining open dimensions by exploiting the high resolution meteorological forecast available to a ground-based system. The two-stage trajectory prediction process was applied to a sample of 438 FANS-equipped Boeing 737-800 flights into Melbourne conducting a continuous descent free from ATC intervention, and can be extrapolated to other types of aircraft. Trajectories predicted through the two-stage approach provided estimated time of arrivals with a 30% reduction in standard deviation of the error compared to estimated time of arrival calculated by the FMS. This improved predicted trajectory can subsequently be used to set the sequence and allocate landing slots. Based on the allocated landing slot, the proposed system calculates a speed schedule for the aircraft to meet this landing slot at minimal flight efficiency impact. A novel algorithm is presented that determines this speed schedule without requiring an iterative process in which multiple calls to a trajectory predictor need to be made. The algorithm is based on parameterisation of the trajectory prediction process, allowing the estimate time of arrival to be represented by a polynomial function of the speed schedule, providing an analytical solution to the speed schedule required to meet a set arrival time. The arrival management solution proposed in this thesis leverages the use of existing avionics and communications systems resulting in new value for industry for current investment. The solution therefore supports a transition concept from mixed equipage towards advanced avionics currently under development. Benefits realised under this transition may provide an incentive for ongoing investment in avionics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el futuro, la gestión del tráfico aéreo (ATM, del inglés air traffic management) requerirá un cambio de paradigma, de la gestión principalmente táctica de hoy, a las denominadas operaciones basadas en trayectoria. Un incremento en el nivel de automatización liberará al personal de ATM —controladores, tripulación, etc.— de muchas de las tareas que realizan hoy. Las personas seguirán siendo el elemento central en la gestión del tráfico aéreo del futuro, pero lo serán mediante la gestión y toma de decisiones. Se espera que estas dos mejoras traigan un incremento en la eficiencia de la gestión del tráfico aéreo que permita hacer frente al incremento previsto en la demanda de transporte aéreo. Para aplicar el concepto de operaciones basadas en trayectoria, el usuario del espacio aéreo (la aerolínea, piloto, u operador) y el proveedor del servicio de navegación aérea deben negociar las trayectorias mediante un proceso de toma de decisiones colaborativo. En esta negociación, es necesaria una forma adecuada de compartir dichas trayectorias. Compartir la trayectoria completa requeriría un gran ancho de banda, y la trayectoria compartida podría invalidarse si cambiase la predicción meteorológica. En su lugar, podría compartirse una descripción de la trayectoria independiente de las condiciones meteorológicas, de manera que la trayectoria real se pudiese calcular a partir de dicha descripción. Esta descripción de la trayectoria debería ser fácil de procesar usando un programa de ordenador —ya que parte del proceso de toma de decisiones estará automatizado—, pero también fácil de entender para un operador humano —que será el que supervise el proceso y tome las decisiones oportunas—. Esta tesis presenta una serie de lenguajes formales que pueden usarse para este propósito. Estos lenguajes proporcionan los medios para describir trayectorias de aviones durante todas las fases de vuelo, desde la maniobra de push-back (remolcado hasta la calle de rodaje), hasta la llegada a la terminal del aeropuerto de destino. También permiten describir trayectorias tanto de aeronaves tripuladas como no tripuladas, incluyendo aviones de ala fija y cuadricópteros. Algunos de estos lenguajes están estrechamente relacionados entre sí, y organizados en una jerarquía. Uno de los lenguajes fundamentales de esta jerarquía, llamado aircraft intent description language (AIDL), ya había sido desarrollado con anterioridad a esta tesis. Este lenguaje fue derivado de las ecuaciones del movimiento de los aviones de ala fija, y puede utilizarse para describir sin ambigüedad trayectorias de este tipo de aeronaves. Una variante de este lenguaje, denominada quadrotor AIDL (QR-AIDL), ha sido desarrollada en esta tesis para permitir describir trayectorias de cuadricópteros con el mismo nivel de detalle. Seguidamente, otro lenguaje, denominado intent composite description language (ICDL), se apoya en los dos lenguajes anteriores, ofreciendo más flexibilidad para describir algunas partes de la trayectoria y dejar otras sin especificar. El ICDL se usa para proporcionar descripciones genéricas de maniobras comunes, que después se particularizan y combinan para formar descripciones complejas de un vuelo. Otro lenguaje puede construirse a partir del ICDL, denominado flight intent description language (FIDL). El FIDL especifica requisitos de alto nivel sobre las trayectorias —incluyendo restricciones y objetivos—, pero puede utilizar características del ICDL para proporcionar niveles de detalle arbitrarios en las distintas partes de un vuelo. Tanto el ICDL como el FIDL han sido desarrollados en colaboración con Boeing Research & Technology Europe (BR&TE). También se ha desarrollado un lenguaje para definir misiones en las que interactúan varias aeronaves, el mission intent description language (MIDL). Este lenguaje se basa en el FIDL y mantiene todo su poder expresivo, a la vez que proporciona nuevas semánticas para describir tareas, restricciones y objetivos relacionados con la misión. En ATM, los movimientos de un avión en la superficie de aeropuerto también tienen que ser monitorizados y gestionados. Otro lenguaje formal ha sido diseñado con este propósito, llamado surface movement description language (SMDL). Este lenguaje no pertenece a la jerarquía de lenguajes descrita en el párrafo anterior, y se basa en las clearances (autorizaciones del controlador) utilizadas durante las operaciones en superficie de aeropuerto. También proporciona medios para expresar incertidumbre y posibilidad de cambios en las distintas partes de la trayectoria. Finalmente, esta tesis explora las aplicaciones de estos lenguajes a la predicción de trayectorias y a la planificación de misiones. El concepto de trajectory language processing engine (TLPE) se usa en ambas aplicaciones. Un TLPE es una función de ATM cuya principal entrada y salida se expresan en cualquiera de los lenguajes incluidos en la jerarquía descrita en esta tesis. El proceso de predicción de trayectorias puede definirse como una combinación de TLPEs, cada uno de los cuales realiza una pequeña sub-tarea. Se le ha dado especial importancia a uno de estos TLPEs, que se encarga de generar el perfil horizontal, vertical y de configuración de la trayectoria. En particular, esta tesis presenta un método novedoso para la generación del perfil vertical. El proceso de planificar una misión también se puede ver como un TLPE donde la entrada se expresa en MIDL y la salida consiste en cierto número de trayectorias —una por cada aeronave disponible— descritas utilizando FIDL. Se ha formulado este problema utilizando programación entera mixta. Además, dado que encontrar caminos óptimos entre distintos puntos es un problema fundamental en la planificación de misiones, también se propone un algoritmo de búsqueda de caminos. Este algoritmo permite calcular rápidamente caminos cuasi-óptimos que esquivan todos los obstáculos en un entorno urbano. Los diferentes lenguajes formales definidos en esta tesis pueden utilizarse como una especificación estándar para la difusión de información entre distintos actores de la gestión del tráfico aéreo. En conjunto, estos lenguajes permiten describir trayectorias con el nivel de detalle necesario en cada aplicación, y se pueden utilizar para aumentar el nivel de automatización explotando esta información utilizando sistemas de soporte a la toma de decisiones. La aplicación de estos lenguajes a algunas funciones básicas de estos sistemas, como la predicción de trayectorias, han sido analizadas. ABSTRACT Future air traffic management (ATM) will require a paradigm shift from today’s mainly tactical ATM to trajectory-based operations (TBOs). An increase in the level of automation will also relieve humans —air traffic control officers (ATCOs), flight crew, etc.— from many of the tasks they perform today. Humans will still be central in this future ATM, as decision-makers and managers. These two improvements (TBOs and increased automation) are expected to provide the increase in ATM performance that will allow coping with the expected increase in air transport demand. Under TBOs, trajectories are negotiated between the airspace user (an airline, pilot, or operator) and the air navigation service provider (ANSP) using a collaborative decision making (CDM) process. A suitable method for sharing aircraft trajectories is necessary for this negotiation. Sharing a whole trajectory would require a high amount of bandwidth, and the shared trajectory might become invalid if the weather forecast changed. Instead, a description of the trajectory, decoupled from the weather conditions, could be shared, so that the actual trajectory could be computed from this trajectory description. This trajectory description should be easy to process using a computing program —as some of the CDM processes will be automated— but also easy to understand for a human operator —who will be supervising the process and making decisions. This thesis presents a series of formal languages that can be used for this purpose. These languages provide the means to describe aircraft trajectories during all phases of flight, from push back to arrival at the gate. They can also describe trajectories of both manned and unmanned aircraft, including fixedwing and some rotary-wing aircraft (quadrotors). Some of these languages are tightly interrelated and organized in a language hierarchy. One of the key languages in this hierarchy, the aircraft intent description language (AIDL), had already been developed prior to this thesis. This language was derived from the equations of motion of fixed-wing aircraft, and can provide an unambiguous description of fixed-wing aircraft trajectories. A variant of this language, the quadrotor AIDL (QR-AIDL), is developed in this thesis to allow describing a quadrotor aircraft trajectory with the same level of detail. Then, the intent composite description language (ICDL) is built on top of these two languages, providing more flexibility to describe some parts of the trajectory while leaving others unspecified. The ICDL is used to provide generic descriptions of common aircraft manoeuvres, which can be particularized and combined to form complex descriptions of flight. Another language is built on top of the ICDL, the flight intent description language (FIDL). The FIDL specifies high-level requirements on trajectories —including constraints and objectives—, but can use features of the ICDL to provide arbitrary levels of detail in different parts of the flight. The ICDL and FIDL have been developed in collaboration with Boeing Research & Technology Europe (BR&TE). Also, the mission intent description language (MIDL) has been developed to allow describing missions involving multiple aircraft. This language is based on the FIDL and keeps all its expressive power, while it also provides new semantics for describing mission tasks, mission objectives, and constraints involving several aircraft. In ATM, the movement of aircraft while on the airport surface also has to be monitored and managed. Another formal language has been designed for this purpose, denoted surface movement description language (SMDL). This language does not belong to the language hierarchy described above, and it is based on the clearances used in airport surface operations. Means to express uncertainty and mutability of different parts of the trajectory are also provided. Finally, the applications of these languages to trajectory prediction and mission planning are explored in this thesis. The concept of trajectory language processing engine (TLPE) is used in these two applications. A TLPE is an ATM function whose main input and output are expressed in any of the languages in the hierarchy described in this thesis. A modular trajectory predictor is defined as a combination of multiple TLPEs, each of them performing a small subtask. Special attention is given to the TLPE that builds the horizontal, vertical, and configuration profiles of the trajectory. In particular, a novel method for the generation of the vertical profile is presented. The process of planning a mission can also be seen as a TLPE, where the main input is expressed in the MIDL and the output consists of a number of trajectory descriptions —one for each aircraft available in the mission— expressed in the FIDL. A mixed integer linear programming (MILP) formulation for the problem of assigning mission tasks to the available aircraft is provided. In addition, since finding optimal paths between locations is a key problem to mission planning, a novel path finding algorithm is presented. This algorithm can compute near-shortest paths avoiding all obstacles in an urban environment in very short times. The several formal languages described in this thesis can serve as a standard specification to share trajectory information among different actors in ATM. In combination, these languages can describe trajectories with the necessary level of detail for any application, and can be used to increase automation by exploiting this information using decision support tools (DSTs). Their applications to some basic functions of DSTs, such as trajectory prediction, have been analized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Travel time savings, better quality of the supplied services, greater comfort for the users, and improved accessibility are the main factors of success of High Speed Rail(HSR)links. This paper presents the results from a revealed and stated preference survey conducted to both HSR and air transport users in the Madrid Barcelona corridor. The data gathered from the stated preference survey was used to calibrate a modal choice model aiming at explaining competition between HSR and air transportation in the corridor. From the model, the authors obtain that prices and service frequency are the most important variables to compete with the other mode. In addition, they found that check-in and security controls at the airport are a crucial variable for the users in their modal choice. Other policies, such as the improvement of parking facilities at the train stations, play a secondary role.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes an automatic-dependent surveillance-broadcast (ADS-B) implementation for air-to-air and ground-based experimental surveillance within a prototype of a fully automated air traffic management (ATM) system, under a trajectory-based-operations paradigm. The system is built using an air-inclusive implementation of system wide information management (SWIM). This work describes the relations between airborne and ground surveillance (SURGND), the prototype surveillance systems, and their algorithms. System's performance is analyzed with simulated and real data. Results show that the proposed ADS-B implementation can fulfill the most demanding surveillance accuracy requirements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of barometric altimetry is to some extent a limiting factor on safety, predictability and efficiency of aircraft operations, and reduces the potential of the trajectory based operations capabilities. However, geometric altimetry could be used to improve all of these aspects. Nowadays aircraft altitude is estimated by applying the International Standard Atmosphere which differs from real altitude. At different temperatures for an assigned barometric altitude, aerodynamic forces are different and this has a direct relationship with time, fuel consumption and range of the flight. The study explores the feasibility of using sensors providing geometric reference altitude, in particular, to supply capabilities for the optimization of vertical profiles and also, their impact on the vertical Air Traffic Management separation assurance processes. One of the aims of the thesis is to assess if geometric altitude fulfils the aeronautical requirements through existing sensors. Also the thesis will elaborate on the advantages of geometric altitude over the barometric altitude in terms of efficiency for vertical navigation. The evidence that geometric altitude is the best choice to improve the efficiency in vertical profile and aircraft capacity by reducing vertical uncertainties will also be shown. In this paper, an atmospheric study is presented, as well as the impact of temperature deviation from International Standard Atmosphere model is analyzed in order to obtain relationship between geometric and barometric altitude. Furthermore, an aircraft model to study aircraft vertical profile is provided to analyse trajectories based on geometric altitudes.