249 resultados para 220715 Energía nuclear

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurate control over the spent nuclear fuel content is essential for its safe and optimized transportation, storage and management. Consequently, the reactivity of spent fuel and its isotopic content must be accurately determined. Nowadays, to predict isotopic evolution throughout irradiation and decay periods is not a problem thanks to the development of powerful codes and methodologies. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, it is desirable to determine how uncertainties in the basic nuclear data affect isotopic prediction calculations by quantifying their associated uncertainties

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The successful experience of the Jose Cabrera Nuclear Power Plant Interactive Graphical Simulator implementation in the Nuclear Engineering Department in the Universidad Polite´cnica de Madrid, for the Education and Training of nuclear engineers is shown in this paper. The paper starts with the objectives and the description of the Simulator Aula, and the methodology of work following the recommendations of the IAEA for the use of nuclear reactor simulators for education. The practices and material prepared for the students, as well as the operational and accident situations simulated are provided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The assessment of the accuracy of parameters related to the reactor core performance (e.g., ke) and f el cycle (e.g., isotopic evolution/transmutation) due to the uncertainties in the basic nuclear data (ND) is a critical issue. Different error propagation techniques (adjoint/forward sensitivity analysis procedures and/or Monte Carlo technique) can be used to address by computational simulation the systematic propagation of uncertainties on the final parameters. To perform this uncertainty assessment, the ENDF covariance les (variance/correlation in energy and cross- reactions-isotopes correlations) are required. In this paper, we assess the impact of ND uncertainties on the isotopic prediction for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) for a discharge burnup of 150 GWd/tHM. The complete set of uncertainty data for cross sections (EAF2007/UN, SCALE6.0/COVA-44G), radioactive decay and fission yield data (JEFF-3.1.1) are processed and used in ACAB code.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En este artículo se realiza una disertación sobre la sostenibilidad energética y la contribución de las diferentes energías a ella, analizando con especial énfasis el papel que desempeña la fusión nuclear en el desarrollo sostenible

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To study the propagation of the uncertainty from basic data across different scale and physics phenomena -> through complex coupled multi-physics and multi-scale simulations

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurate control over the spent nuclear fuel content is essential for its safe and optimized transportation, storage and management. Consequently, the reactivity of spent fuel and its isotopic content must be accurately determined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The accurate prediction of the spent nuclear fuel content is essential for its safe and optimized transportation, storage and management. This isotopic evolution can be predicted using powerful codes and methodologies throughout irradiation as well as cooling time periods. However, in order to have a realistic confidence level in the prediction of spent fuel isotopic content, it is desirable to determine how uncertainties affect isotopic prediction calculations by quantifying their associated uncertainties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, computer simulators are becoming basic tools for education and training in many engineering fields. In the nuclear industry, the role of simulation for training of operators of nuclear power plants is also recognized of the utmost relevance. As an example, the International Atomic Energy Agency sponsors the development of nuclear reactor simulators for education, and arranges the supply of such simulation programs. Aware of this, in 2008 Gas Natural Fenosa, a Spanish gas and electric utility that owns and operate nuclear power plants and promotes university education in the nuclear technology field, provided the Department of Nuclear Engineering of Universidad Politécnica de Madrid with the Interactive Graphic Simulator (IGS) of “José Cabrera” (Zorita) nuclear power plant, an industrial facility whose commercial operation ceased definitively in April 2006. It is a state-of-the-art full-scope real-time simulator that was used for training and qualification of the operators of the plant control room, as well as to understand and analyses the plant dynamics, and to develop, qualify and validate its emergency operating procedures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El Departamento de Ingeniería Nuclear imparte los Programas oficiales de Máster y Doctorado en Ciencia y Tecnología Nuclear, que cuentan desde el año 2006 con la Mención de Calidad del Ministerio de Educación y desde este curso 2010-2011con la Mención a la Excelencia. El contenido del Máster abarca desde la tecnología nuclear de los reactores de fisión hasta el estudio de los combustibles y materiales para los futuros reactores de fusión tanto inercial como magnética.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Las principales ventajas de los reactores de espectro neutrónico rápido refrigerados por metales líquidos (por ejemplo sodio) no sólo consisten en un eficiente uso del combustible por medio de la reproducción de material físil y de la utilización de uranio natural o empobrecido, sino que además logran reducir la cantidad de actínidos como el Americio o Neptunio, presentes en el combustible irradiado. El primer aspecto se traduce en una garantía de suministro de combustible prácticamente ilimitada, mientras que el segundo es importante porque estos elementos son los responsables de una gran parte de la actividad del combustible irradiado. La posibilidad de contar con un parque de reactores rápidos posibilitaría que la estrategia de ciclo de combustible no tuviese que ser necesariamente de tipo abierto, como en la mayoría de los países que cuentan con energía nuclear, sino una variación del ciclo cerrado avanzado donde el plutonio y los actínidos minoritarios separados del combustible irradiado forman parte del nuevo combustible que generará energía eléctrica. En este trabajo se analiza un hipotético escenario de generación en España, comprobando si un parque de dichos reactores resolvería algunos de los retos con los que la energía nuclear de fisión actual se enfrenta, ya que, como se ha dicho anteriormente, este tipo de reactores mejoran la seguridad, garantizan el suministro y gestionan más eficientemente tanto su propio combustible como el combustible irradiado en los reactores LWR actuales. A continuación se presentan las características y objetivos de los sistemas innovadores de Gen‐IV, entre los que se encuentran los reactores rápidos más avanzados, que dan un salto en concepto y en tecnología respecto a los reactores de Generación III+. Posteriormente se presenta una descripción del caso nuclear español y finalmente se detallan los resultados del estudio mostrando qué efectos tendría este escenario sobre el aprovechamiento y necesidades del combustible, así como sobre la reducción del inventario radioisotópico del combustible gastado ya existente y producido por la propia generación de reactores rápidos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A finales de 2009, Jóvenes Nucleares (JJNN) y la Universidad Politécnica de Madrid (UPM) comenzaron a planificar un nuevo y original seminario que tratase de la seguridad nuclear centrada en los reactores avanzados (Generación III, III+ y IV). El objetivo era hacer una descripción general de la seguridad en los nuevos reactores en comparación con los reactores construidos de la generación II desde un punto de vista técnico pero simple y sin la necesidad de un conocimiento muy profundo en ingeniería nuclear, para intentar que fuera interesante para el mayor número de gente posible. Después de un gran esfuerzo de JJNN con la ayuda del UPM, el seminario tuvo lugar en abril de 2010 en la ETS de Ingenieros Industriales (ETSII). Las lecciones fueron conducidas por jóvenes profesionales, expertos en la materia, que pertenecen a Jóvenes Nucleares y a compañías e instituciones relacionadas con la energía nuclear.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help spread knowledge about nuclear energy, not only pointing out its advantages and its role in our society, but also trying to correct some of the ideas that are due to the biased information and to the lack of knowledge. To try to have success in that goal, some high school lectures were taught and it has been organized regularly a Basic Course on Nuclear Science and Technology

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help transferring the knowledge between those generations in the way that it can be possible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this course, conducted by Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE) is to pass on basic knowledge about Science and Nuclear Technology to the general public, mostly students and introduce them to its most relevant points. The purposes of this course are to provide general information, to answer the most common questions about Nuclear Energy and to motivate the young students to start a career in nuclear. Therefore, it is directed mainly to high school and university students, but also to general people that wants to learn about the key issues of such an important matter in our society. Anybody could attend the course, as no specific scientific education is required. The course is done at least once a year, during the Annual Meeting of the Spanish Nuclear Society, which takes place in a different Spanish city each time. The course is done also to whichever university or institution that asks for it to JJNN, with the only limit of the presenter´s availability. The course is divided into the following chapters: Physical nuclear and radiation principles, Nuclear power plants, Nuclear safety, Nuclear fuel, Radioactive waste, Decommission of nuclear facilities, Future nuclear power plants, Other uses of nuclear technology, Nuclear energy, climate change and sustainable development. The course is divided into 15 minutes lessons on the above topics, imparted by young professionals, experts in the field that belongs either to the Spanish Young Generation in Nuclear, either to companies and institutions related with nuclear energy. At the end of the course, a 200 pages book with the contents of the course is handed to every member of the audience. This book is also distributed in other course editions at high schools and universities in order to promote the scientific dissemination of the Nuclear Technology. As an extra motivation, JJNN delivers a course certificate to the assistants. At the end of the last edition course, in Santiago de Compostela, the assistants were asked to provide a feedback about it. Some really interesting lessons were learned, that will be very useful to improve next editions of the course. As a general conclusion of the courses it can be said that many of the students that have assisted to the course have increased their motivation in the nuclear field, and hopefully it will help the young talents to choose the nuclear field to develop their careers

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the main goals of Spanish Young Generation (JJNN) is to spread knowledge about nuclear energy, not only pointing out its advantages and its role in our society, but also trying to correct some of the ideas that are due to the biased information and to the lack of knowledge. With this goal in mind, lectures were given in several high schools, aimed at students ranging from 14 to 18 years old. This paper explains the experience accumulated during those talks and the conclusions that can be drawn, so as to better focus the communication about nuclear energy, especially the one aimed at a young public. In order to evaluate the degree of knowledge and information on a specific topic of a given group of individuals, statistical methods must be used. At the beginning of each lecture (and sometimes at the end, in order to evaluate the impact of the talk) the students were submitted to a short survey conducted by Spanish Young Generation. It consisted in eight questions, dealing with the relation between the main environmental issues (global warming, acid rain, radioactive waste…) and nuclear energy. The answers can be surprising, especially for professionals of the nuclear field who, since they are so familiar with this topic, often forget that this is just the case of a minority of people. A better knowledge of the degree of information of a given group enables to focus and personalize the communication. Another communication tool is the direct contact with students: it starts with their questions, which can then lead to a small debate. If the surveys inform about the topics they are unaware of, the direct exchange with them enables to find the most effective way to provide them the information. Of course, it depends a lot on the public attending the talk (age, background…) and on the debate following the talk: a good communication, adapted to the public, is necessary. Therefore, the outcome of the performed exercise is that Spanish teenagers have still a lack of knowledge about nuclear energy. We can learn that items that are evident for nuclear young professionals are unknown for high school teenagers